+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading?


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          AKT/PKB Signaling: Navigating the Network

          The Ser/Thr kinase AKT, also known as protein kinase B (PKB), was discovered 25 years ago and has been the focus of tens of thousands of studies in diverse fields of biology and medicine. There have been many advances in our knowledge of the upstream regulatory inputs into AKT, key multifunctional downstream signaling nodes (GSK3, FoxO, mTORC1), which greatly expand the functional repertoire of Akt, and the complex circuitry of this dynamically branching and looping signaling network that is ubiquitous to nearly every cell in our body. Mouse and human genetic studies have also revealed physiological roles for the AKT network in nearly every organ system. Our comprehension of AKT regulation and functions is particularly important given the consequences of AKT dysfunction in diverse pathological settings, including developmental and overgrowth syndromes, cancer, cardiovascular disease, insulin resistance and type-2 diabetes, inflammatory and autoimmune disorders, and neurological disorders. There has also been much progress in developing AKT-selective small molecule inhibitors. Improved understanding of the molecular wiring of the AKT signaling network continues to make an impact that cuts across most disciplines of the biomedical sciences.
            • Record: found
            • Abstract: found
            • Article: not found

            The PI3K Pathway in Human Disease.

            Phosphoinositide 3-kinase (PI3K) activity is stimulated by diverse oncogenes and growth factor receptors, and elevated PI3K signaling is considered a hallmark of cancer. Many PI3K pathway-targeted therapies have been tested in oncology trials, resulting in regulatory approval of one isoform-selective inhibitor (idelalisib) for treatment of certain blood cancers and a variety of other agents at different stages of development. In parallel to PI3K research by cancer biologists, investigations in other fields have uncovered exciting and often unpredicted roles for PI3K catalytic and regulatory subunits in normal cell function and in disease. Many of these functions impinge upon oncology by influencing the efficacy and toxicity of PI3K-targeted therapies. Here we provide a perspective on the roles of class I PI3Ks in the regulation of cellular metabolism and in immune system functions, two topics closely intertwined with cancer biology. We also discuss recent progress developing PI3K-targeted therapies for treatment of cancer and other diseases.
              • Record: found
              • Abstract: found
              • Article: not found

              Functional interaction between beta-catenin and FOXO in oxidative stress signaling.

              beta-Catenin is a multifunctional protein that mediates Wnt signaling by binding to members of the T cell factor (TCF) family of transcription factors. Here, we report an evolutionarily conserved interaction of beta-catenin with FOXO transcription factors, which are regulated by insulin and oxidative stress signaling. beta-Catenin binds directly to FOXO and enhances FOXO transcriptional activity in mammalian cells. In Caenorhabditis elegans, loss of the beta-catenin BAR-1 reduces the activity of the FOXO ortholog DAF-16 in dauer formation and life span. Association of beta-catenin with FOXO was enhanced in cells exposed to oxidative stress. Furthermore, BAR-1 was required for the oxidative stress-induced expression of the DAF-16 target gene sod-3 and for resistance to oxidative damage. These results demonstrate a role for beta-catenin in regulating FOXO function that is particularly important under conditions of oxidative stress.

                Author and article information

                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                16 March 2021
                : 9
                [1] 1Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University , Zhengzhou, China
                [2] 2China-US (Henan) Hormel Cancer Institute , Zhengzhou, China
                Author notes

                Edited by: Paola Costelli, University of Turin, Italy

                Reviewed by: Luis E. Arias-Romero, National Autonomous University of Mexico, Mexico; Joseph Aslan, Oregon Health and Science University, United States; Baoan Ji, Mayo Clinic Florida, United States

                *Correspondence: Zigang Dong, dongzg@ 123456zzu.edu.cn

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Cell and Developmental Biology

                Copyright © 2021 Liu, Liu and Dong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 145, Pages: 12, Words: 0
                Cell and Developmental Biology
                Mini Review

                paks, cancer, disease, mechanism, inhibitor


                Comment on this article