42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ferroptosis is a novel mode of non-apoptotic cell death induced by build-up of toxic lipid peroxides (lipid-ROS) in an iron dependent manner. Cancer-associated fibroblasts (CAFs) support tumor progression and drug resistance by secreting various bioactive substances, including exosomes. Yet, the role of CAFs in regulating lipid metabolism as well as ferroptosis of cancer cells is still unexplored and remains enigmatic.

          Methods

          Ferroptosis-related genes in gastric cancer (GC) were screened by using mass spectrum; exosomes were isolated by ultra-centrifugation and CAF secreted miRNAs were determined by RT-qPCR. Erastin was used to induce ferroptosis, and ferroptosis levels were evaluated by measuring lipid-ROS, cell viability and mitochondrial membrane potential.

          Results

          Here, we provide clinical evidence to show that arachidonate lipoxygenase 15 (ALOX15) is closely related with lipid-ROS production in gastric cancer, and that exosome-miR-522 serves as a potential inhibitor of ALOX15. By using primary stromal cells and cancer cells, we prove that exosome-miR-522 is mainly derived from CAFs in tumor microenvironment. Moreover, heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) was found to mediate miR-522 packing into exosomes, and ubiquitin-specific protease 7 (USP7) stabilizes hnRNPA1 through de-ubiquitination. Importantly, cisplatin and paclitaxel promote miR-522 secretion from CAFs by activating USP7/hnRNPA1 axis, leading to ALOX15 suppression and decreased lipid-ROS accumulation in cancer cells, and ultimately result in decreased chemo-sensitivity.

          Conclusions

          The present study demonstrates that CAFs secrete exosomal miR-522 to inhibit ferroptosis in cancer cells by targeting ALOX15 and blocking lipid-ROS accumulation. The intercellular pathway, comprising USP7, hnRNPA1, exo-miR-522 and ALOX15, reveals new mechanism of acquired chemo-resistance in GC.

          Graphical abstract

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death.

          Oxidative stress in conjunction with glutathione depletion has been linked with various acute and chronic degenerative disorders, yet the molecular mechanisms have remained unclear. In contrast to the belief that oxygen radicals are detrimental to cells and tissues by unspecific oxidation of essential biomolecules, we now demonstrate that oxidative stress is sensed and transduced by glutathione peroxidase 4 (GPx4) into a-yet-unrecognized cell-death pathway. Inducible GPx4 inactivation in mice and cells revealed 12/15-lipoxygenase-derived lipid peroxidation as specific downstream event, triggering apoptosis-inducing factor (AIF)-mediated cell death. Cell death could be entirely prevented either by alpha-tocopherol (alpha-Toc), 12/15-lipoxygenase inhibitors, or siRNA-mediated AIF silencing. Accordingly, 12/15-lipoxygenase-deficient cells were highly resistant to glutathione depletion. Neuron-specific GPx4 depletion caused neurodegeneration in vivo and ex vivo, highlighting the importance of this pathway in neuronal cells. Since oxidative stress is common in the etiology of many human disorders, the identified pathway reveals promising targets for future therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

            Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N(1)-acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis.

              Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide and currently has the fastest rising incidence of all cancers. Sorafenib was originally identified as an inhibitor of multiple oncogenic kinases and remains the only approved systemic therapy for advanced HCC. However, acquired resistance to sorafenib has been found in HCC patients, which results in poor prognosis. Here, we show that metallothionein (MT)-1G is a critical regulator and promising therapeutic target of sorafenib resistance in human HCC cells. The expression of MT-1G messenger RNA and protein is remarkably induced by sorafenib but not other clinically relevant kinase inhibitors (e.g., erlotinib, gefitinib, tivantinib, vemurafenib, selumetinib, imatinib, masitinib, and ponatinib). Activation of the transcription factor nuclear factor erythroid 2-related factor 2, but not p53 and hypoxia-inducible factor 1-alpha, is essential for induction of MT-1G expression following sorafenib treatment. Importantly, genetic and pharmacological inhibition of MT-1G enhances the anticancer activity of sorafenib in vitro and in tumor xenograft models. The molecular mechanisms underlying the action of MT-1G in sorafenib resistance involve the inhibition of ferroptosis, a novel form of regulated cell death. Knockdown of MT-1G by RNA interference increases glutathione depletion and lipid peroxidation, which contributes to sorafenib-induced ferroptosis.
                Bookmark

                Author and article information

                Contributors
                yingguoguang163@163.com
                bayi@tjmuch.com
                Journal
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central (London )
                1476-4598
                27 February 2020
                27 February 2020
                2020
                : 19
                : 43
                Affiliations
                GRID grid.411918.4, ISNI 0000 0004 1798 6427, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, ; Tianjin, 300060 China
                Author information
                http://orcid.org/0000-0003-0255-4376
                Article
                1168
                10.1186/s12943-020-01168-8
                7045485
                32106859
                8de140ae-1bc2-4dc2-a69b-c0924b97c584
                © The Author(s) 2020

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 November 2019
                : 17 February 2020
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                ferroptosis,cancer-associated fibroblasts,exosomes,mir-522,gc
                Oncology & Radiotherapy
                ferroptosis, cancer-associated fibroblasts, exosomes, mir-522, gc

                Comments

                Comment on this article