23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes Promotes Repair in Ischemic Myocardium

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our previous study demonstrated the beneficial effects of exosomes secreted by cardiac mesenchymal stem cells (C-MSC-Exo) in protecting acute ischemic myocardium from reperfusion injury. Here, we investigated the effect of exosomes from C-MSC on angiogenesis in ischemic myocardium. We intramyocardially injected C-MSC-Exo or PBS into the infarct border zone after induction of acute mouse myocardial infarction (MI). We observed that hearts treated with C-MSC-Exo exhibit improved cardiac function compared to control hearts treated with PBS at one month after MI. Capillary density and Ki67-postive cells were significantly higher following treatment with C-MSC-Exo as compared with PBS. Moreover, C-MSC-Exo treatment increased cardiomyocyte proliferation in infarcted hearts. In conclusion, intramyocardial delivery of C-MSC-Exo after myocardial infarction enhances cardiac angiogenesis, promotes cardiomyocyte proliferation, and preserves heart function. C-MSC-Exo constitute a novel form of cell-free therapy for cardiac repair.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Global and regional patterns in cardiovascular mortality from 1990 to 2013.

          There is a global commitment to reduce premature cardiovascular diseases (CVDs) 25% by 2025. CVD mortality rates have declined dramatically over the past 2 decades, yet the number of life years lost to premature CVD deaths is increasing in low- and middle-income regions. Ischemic heart disease and stroke remain the leading causes of premature death in the world; however, there is wide regional variation in these patterns. Some regions, led by Central Asia, face particularly high rates of premature death from ischemic heart disease. Sub-Saharan Africa and Asia suffer disproportionately from death from stroke. The purpose of the present report is to (1) describe global trends and regional variation in premature mortality attributable to CVD, (2) review past and current approaches to the measurement of these trends, and (3) describe the limitations of existing models of epidemiological transitions for explaining the observed distribution and trends of CVD mortality. We describe extensive variation both between and within regions even while CVD remains a dominant cause of death. Policies and health interventions will need to be tailored and scaled for a broad range of local conditions to achieve global goals for the improvement of cardiovascular health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family.

            We recently identified a brief time period during postnatal development when the mammalian heart retains significant regenerative potential after amputation of the ventricular apex. However, one major unresolved question is whether the neonatal mouse heart can also regenerate in response to myocardial ischemia, the most common antecedent of heart failure in humans. Here, we induced ischemic myocardial infarction (MI) in 1-d-old mice and found that this results in extensive myocardial necrosis and systolic dysfunction. Remarkably, the neonatal heart mounted a robust regenerative response, through proliferation of preexisting cardiomyocytes, resulting in full functional recovery within 21 d. Moreover, we show that the miR-15 family of microRNAs modulates neonatal heart regeneration through inhibition of postnatal cardiomyocyte proliferation. Finally, we demonstrate that inhibition of the miR-15 family from an early postnatal age until adulthood increases myocyte proliferation in the adult heart and improves left ventricular systolic function after adult MI. We conclude that the neonatal mammalian heart can regenerate after myocardial infarction through proliferation of preexisting cardiomyocytes and that the miR-15 family contributes to postnatal loss of cardiac regenerative capacity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents

              Exosomes play a role in cell-to-cell signaling and serve as possible biomarkers. Isolating exosomes with reliable quality and substantial concentration is a major challenge. Our purpose is to compare the exosomes extracted by three different exosome isolation kits (miRCURY, ExoQuick, and Invitrogen Total Exosome Isolation Reagent) and differential ultracentrifugation (UC) using six different volumes of a non-cancerous human serum (5 ml, 1 ml, 500 μl, 250 μl, 100 μl, and 50 μl) and three different volumes (1 ml, 500 μl and 100 μl) of six individual commercial serum samples collected from human donors. The smaller starting volumes (100 μl and 50 μl) are used to mimic conditions of limited availability of heterogeneous biological samples. The isolated exosomes were characterized based upon size, quantity, zeta potential, CD63 and CD9 protein expression, and exosomal RNA (exRNA) quality and quantity using several complementary methods: nanoparticle tracking analysis (NTA) with ZetaView, western blot, transmission electron microscopy (TEM), the Agilent Bioanalyzer system, and droplet digital PCR (ddPCR). Our NTA results showed that all isolation techniques produced exosomes within the expected size range (40–150 nm). The three kits, though, produced a significantly higher yield (80–300 fold) of exosomes as compared to UC for all serum volumes, except 5 mL. We also found that exosomes isolated by the different techniques and serum volumes had similar zeta potentials to previous studies. Western blot analysis and TEM immunogold labelling confirmed the expression of two common exosomal protein markers, CD63 and CD9, in samples isolated by all techniques. All exosome isolations yielded high quality exRNA, containing mostly small RNA with a peak between 25 and 200 nucleotides in size. ddPCR results indicated that exosomes isolated from similar serum volumes but different isolation techniques rendered similar concentrations of two selected exRNA: hsa-miR-16 and hsa-miR-451. In summary, the three commercial exosome isolation kits are viable alternatives to UC, even when limited amounts of biological samples are available.
                Bookmark

                Author and article information

                Journal
                Journal of Cardiovascular Translational Research
                J. of Cardiovasc. Trans. Res.
                Springer Science and Business Media LLC
                1937-5387
                1937-5395
                October 2018
                September 19 2018
                October 2018
                : 11
                : 5
                : 420-428
                Article
                10.1007/s12265-018-9822-0
                6212335
                30232729
                8dece2d6-17f2-444f-9e26-8714ea13d2d0
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article