67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The provision of sufficient amounts of dietary proteins is central to muscle health as it ensures the supply of essential amino acids and stimulates protein synthesis. Older persons, in particular, are at high risk of insufficient protein ingestion. Furthermore, the current recommended dietary allowance for protein (0.8 g/kg/day) might be inadequate for maintaining muscle health in older adults, probably as a consequence of “anabolic resistance” in aged muscle. Older individuals therefore need to ingest a greater quantity of protein to maintain muscle function. The quality of protein ingested is also essential to promoting muscle health. Given the role of leucine as the master dietary regulator of muscle protein turnover, the ingestion of protein sources enriched with this essential amino acid, or its metabolite β-hydroxy β-methylbutyrate, is thought to offer the greatest benefit in terms of preservation of muscle mass and function in old age.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis.

          Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two weeks of reduced activity decreases leg lean mass and induces "anabolic resistance" of myofibrillar protein synthesis in healthy elderly.

            Alterations in muscle protein metabolism underlie age-related muscle atrophy. During periods of muscle disuse, muscle protein synthesis is blunted, and muscle atrophy occurs in young and old. The impact of a short reduction in physical activity on muscle protein metabolism in older adults is unknown. The aim of this study was to investigate the impact of 14 days of reduced daily steps on fasted and fed-state rates of myofibrillar protein synthesis (MPS) to provide insight into the mechanisms for changes in muscle mass and markers of metabolic health. Before and after 14 days of reduced daily step-count, 10 healthy older adults (age, 72 ± 1 y) underwent measures of insulin sensitivity, muscle strength, physical function, and body composition. Using a primed constant infusion of L-[ring-(13)C6]phenylalanine with serial muscle biopsies, basal, postabsorptive, and postprandial rates of MPS were determined before and after the 14-day intervention. Daily step-count was reduced by approximately 76% to 1413 ± 110 steps per day. Leg fat-free mass was reduced by approximately 3.9% (P < .001). Postabsorptive insulin resistance was increased by approximately 12%, and postprandial insulin sensitivity was reduced by approximately 43% after step reduction (P < .005). Concentrations of TNF-α and C-reactive protein were increased by approximately 12 and 25%, respectively, after step reduction (P < .05). Postprandial rates of MPS were reduced by approximately 26% after the intervention (P = .028), with no difference in postabsorptive rates. The present study demonstrates that 14 days of reduced steps in older adults induces small but measurable reductions in muscle mass that appear to be underpinned by reductions in postprandial MPS and are accompanied by impairments in insulin sensitivity and systemic inflammatory markers and postprandial MPS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion.

              We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 +/- 1 years; 80.2 +/- 4.0 kg, mean +/- S.E.M.) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg(-1) h(-1)). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (-5.0 +/- 1.2% and -25 +/- 3%, respectively, both P 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 +/- 0.003: non-immobilized, 0.037 +/- 0.003% h(-1); P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 +/- 12% with low dose and +68 +/- 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3beta or eEF2. Phosphorylation of focal adhesion kinase (Tyr(576/577)) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the 'anabolic resistance' to amino acids can account for much of immobilization-induced muscle atrophy.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                14 May 2016
                May 2016
                : 8
                : 5
                : 295
                Affiliations
                Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy; riccardo.calvani@ 123456gmail.com (R.C.); matteo.tosato@ 123456rm.unicatt.it (M.T.); annamariamartone@ 123456gmail.com (A.M.M.); eleort@ 123456gmail.com (E.O.); giulia.savera@ 123456libero.it (G.S.); manud1983@ 123456yahoo.it (E.D.); alexsisto@ 123456gmail.com (A.S.); emarzetti@ 123456live.com (E.M.)
                Author notes
                [* ]Correspondence: francesco.landi@ 123456rm.unicatt.it ; Tel.: +39-06-3388-546; Fax: +39-06-3051-911
                Article
                nutrients-08-00295
                10.3390/nu8050295
                4882708
                27187465
                8df8acec-59f7-4ad2-9abf-47483fbf6abc
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 March 2016
                : 07 May 2016
                Categories
                Review

                Nutrition & Dietetics
                sarcopenia,frailty,malnutrition,leucine,anorexia,supplementation,amino acid
                Nutrition & Dietetics
                sarcopenia, frailty, malnutrition, leucine, anorexia, supplementation, amino acid

                Comments

                Comment on this article