139
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility — King County, Washington, March 2020

      research-article
      , MD 1 , 2 , , , MSPH 1 , , MSc 1 , 2 , , PhD 1 , 2 , , PhD 1 , 2 , , MD 1 , , MD 1 , 2 , , PhD 1 , 2 , , MMed 1 , 2 , , MPH 1 , , MD 1 , , PhD 1 , , MS 1 , , PhD 1 , 3 , , PhD 1 , 3 , , PhD 1 , , MD 1 , 4 , , MSN 4 , , MPH 4 , , DVM 4 , , MD 4 , 5 , 5 , , MS 5 , , MD 4 , , MD 1 , , PhD 1 , , MD 1 , , MD 1 , Public Health – Seattle & King County, CDC COVID-19 Investigation Team Public Health – Seattle & King County, CDC COVID-19 Investigation Team Public Health – Seattle & King County, CDC COVID-19 Investigation Team , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Morbidity and Mortality Weekly Report
      Centers for Disease Control and Prevention

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Older adults are susceptible to severe coronavirus disease 2019 (COVID-19) outcomes as a consequence of their age and, in some cases, underlying health conditions ( 1 ). A COVID-19 outbreak in a long-term care skilled nursing facility (SNF) in King County, Washington that was first identified on February 28, 2020, highlighted the potential for rapid spread among residents of these types of facilities ( 2 ). On March 1, a health care provider at a second long-term care skilled nursing facility (facility A) in King County, Washington, had a positive test result for SARS-CoV-2, the novel coronavirus that causes COVID-19, after working while symptomatic on February 26 and 28. By March 6, seven residents of this second facility were symptomatic and had positive test results for SARS-CoV-2. On March 13, CDC performed symptom assessments and SARS-CoV-2 testing for 76 (93%) of the 82 facility A residents to evaluate the utility of symptom screening for identification of COVID-19 in SNF residents. Residents were categorized as asymptomatic or symptomatic at the time of testing, based on the absence or presence of fever, cough, shortness of breath, or other symptoms on the day of testing or during the preceding 14 days. Among 23 (30%) residents with positive test results, 10 (43%) had symptoms on the date of testing, and 13 (57%) were asymptomatic. Seven days after testing, 10 of these 13 previously asymptomatic residents had developed symptoms and were recategorized as presymptomatic at the time of testing. The reverse transcription–polymerase chain reaction (RT-PCR) testing cycle threshold (Ct) values indicated large quantities of viral RNA in asymptomatic, presymptomatic, and symptomatic residents, suggesting the potential for transmission regardless of symptoms. Symptom-based screening in SNFs could fail to identify approximately half of residents with COVID-19. Long-term care facilities should take proactive steps to prevent introduction of SARS-CoV-2 ( 3 ). Once a confirmed case is identified in an SNF, all residents should be placed on isolation precautions if possible ( 3 ), with considerations for extended use or reuse of personal protective equipment (PPE) as needed ( 4 ). Immediately upon identification of the index case in facility A on March 1, nursing and administrative leadership instituted visitor restrictions, twice-daily assessments of COVID-19 signs and symptoms among residents, and fever screening of all health care personnel at the start of each shift. On March 6, Public Health – Seattle and King County, in collaboration with CDC, recommended infection prevention and control measures, including isolation of all symptomatic residents and use of gowns, gloves, eye protection, facemasks, and hand hygiene for health care personnel entering symptomatic residents’ rooms. A data collection tool was developed to ascertain symptom status and underlying medical conditions for all residents. On March 13, the symptom assessment tool was completed by facility A’s nursing staff members by reviewing screening records of residents for the preceding 14 days and by clinician interview of residents at the time of specimen collection. For residents with significant cognitive impairment, symptoms were obtained solely from screening records. A follow-up symptom assessment was completed 7 days later by nursing staff members. Nasopharyngeal swabs were obtained from all 76 residents who agreed to testing and were present in the facility at the time; oropharyngeal swabs were also collected from most residents, depending upon their cooperation. The Washington State Public Health Laboratory performed one-step real-time RT-PCR assay on all specimens using the SARS-CoV-2 CDC assay protocol, which determines the presence of the virus through identification of two genetic markers, the N1 and N2 nucleocapsid protein gene regions ( 5 ). The Ct, the cycle number during RT-PCR testing when detection of viral amplicons occurs, is inversely correlated with the amount of RNA present; a Ct value <40 cycles denotes a positive result for SARS-CoV-2, with a lower value indicating a larger amount of viral RNA. Residents were assessed for stable chronic symptoms (e.g., chronic, unchanged cough) as well as typical and atypical signs and symptoms of COVID-19. Typical COVID-19 signs and symptoms include fever, cough, and shortness of breath ( 3 ); potential atypical symptoms assessed included sore throat, chills, increased confusion, rhinorrhea or nasal congestion, myalgia, dizziness, malaise, headache, nausea, and diarrhea. Residents were categorized as asymptomatic (no symptoms or only stable chronic symptoms) or symptomatic (at least one new or worsened typical or atypical symptom of COVID-19) on the day of testing or during the preceding 14 days. Residents with positive test results and were asymptomatic at time of testing were reevaluated 1 week later to ascertain whether any symptoms had developed in the interim. Those who developed new symptoms were recategorized as presymptomatic. Ct values were compared for the recategorized symptom groups using one-way analysis of variance (ANOVA) for all residents with positive test results for SARS-CoV-2. Analyses were conducted using SAS statistical software (version 9.4; SAS Institute). On March 13, among the 82 residents in facility A; 76 (92.7%) underwent symptom assessment and testing; three (3.7%) refused testing, two (2.4%) who had COVID-19 symptoms were transferred to a hospital before testing, and one (1.2%) was unavailable. Among the 76 tested residents, 23 (30.3%) had positive test results. Demographic characteristics were similar among the 53 (69.7%) residents with negative test results and the 23 (30.3%) with positive test results (Table 1). Among the 23 residents with positive test results, 10 (43.5%) were symptomatic, and 13 (56.5%) were asymptomatic. Eight symptomatic residents had typical COVID-19 symptoms, and two had only atypical symptoms; the most common atypical symptoms reported were malaise (four residents) and nausea (three). Thirteen (24.5%) residents who had negative test results also reported typical and atypical COVID-19 symptoms during the 14 days preceding testing. TABLE 1 Demographics and reported symptoms for residents of a long-term care skilled nursing facility at time of testing* (N = 76), by SARS-CoV-2 test results — facility A, King County, Washington, March 2020 Characteristic Initial SARS-CoV-2 test results Negative, no. (%) Positive, no. (%) Overall 53 (100) 23 (100) Women 32 (60.4) 16 (69.6) Age, mean (SD) 75.1 (10.9) 80.7 (8.4) Current smoker† 7 (13.2) 1 (4.4) Long-term admission type to facility A 35 (66.0) 15 (65.2) Length of stay in facility A before test date, days, median (IQR) 94 (40–455) 70 (21–504) Symptoms in last 14 days Symptomatic 13 (24.5) 10 (43.5) At least one typical COVID-19 symptom§ 9 (17.0) 8 (34.8) Only atypical COVID-19 symptoms¶ 4 (7.5) 2 (8.7) Asymptomatic 40 (75.5) 13 (56.5) No symptoms 32 (60.4) 8 (34.8) Only stable, chronic symptoms 8 (15.1) 5 (21.7) Specific signs and symptoms reported as new or worse in last 14 days Typical symptoms Fever 3 (5.7) 1 (4.3) Cough 6 (11.3) 7 (30.4) Shortness of breath 0 (0) 1 (4.4) Atypical symptoms Malaise 1 (1.9) 4 (17.4) Nausea 0 (0) 3 (13.0) Sore throat 2 (3.8) 2 (8.7) Confusion 2 (3.8) 1 (4.4) Dizziness 1 (1.9) 1 (4.4) Diarrhea 3 (5.7) 1 (4.4) Rhinorrhea/Congestion 1 (1.9) 0 (0) Myalgia 0 (0) 0 (0) Headache 0 (0) 0 (0) Chills 0 (0) 0 (0) Any preexisting medical condition listed 53 (100) 22 (95.7) Specific conditions** Chronic lung disease 16 (30.2) 10 (43.5) Diabetes 20 (37.7) 9 (39.1) Cardiovascular disease 36 (67.9) 20 (87.0) Cerebrovascular accident 19 (35.9) 8 (34.8) Renal disease 18 (34.0) 9 (39.1) Received hemodialysis 2 (3.8) 2 (8.7) Cognitive Impairment 28 (52.8) 13 (56.5) Obesity 11 (20.8) 6 (26.1) Abbreviations: COVID-19 = coronavirus disease 2019; IQR = interquartile range, SD = standard deviation. * Testing performed on March 13, 2020. † Unknown for one resident with negative test results. § Typical symptoms include fever, cough, and shortness of breath. ¶ Atypical symptoms include chills, malaise, sore throat, increased confusion, rhinorrhea or nasal congestion, myalgia, dizziness, headache, nausea, and diarrhea. ** Residents might have multiple conditions. One week after testing, the 13 residents who had positive test results and were asymptomatic on the date of testing were reassessed; 10 had developed symptoms and were recategorized as presymptomatic at the time of testing (Table 2). The most common signs and symptoms that developed were fever (eight residents), malaise (six), and cough (five). The mean interval from testing to symptom onset in the presymptomatic residents was 3 days. Three residents with positive test results remained asymptomatic. TABLE 2 Follow-up symptom assessment 1 week after testing for SARS-CoV-2 among 13 residents of a long-term care skilled nursing facility who were asymptomatic on March 13, 2020 (date of testing) and had positive test results — facility A, King County, Washington, March 2020 Symptom status 1 week after testing No. (%) Asymptomatic 3 (23.1) Developed new symptoms 10 (76.7) Fever 8 (61.5) Malaise 6 (46.1) Cough 5 (38.4) Confusion 4 (30.8) Rhinorrhea/Congestion 4 (30.8) Shortness of breath 3 (23.1) Diarrhea 3 (23.1) Sore throat 1 (7.7) Nausea 1 (7.7) Dizziness 1 (7.7) Real-time RT-PCR Ct values for both genetic markers among residents with positive test results for SARS-CoV-2 ranged from 18.6 to 29.2 (symptomatic [typical symptoms]), 24.3 to 26.3 (symptomatic [atypical symptoms only]), 15.3 to 37.9 (presymptomatic), and 21.9 to 31.0 (asymptomatic) (Figure). There were no significant differences between the mean Ct values in the four symptom status groups (p = 0.3). FIGURE Cycle threshold (Ct) values* for residents of a long-term care skilled nursing facility with positive test results for SARS-CoV-2 by real-time reverse transcription–polymerase chain reaction on March 13, 2020 (n = 23), by symptom status†,§ at time of test — facility A, King County, Washington * Ct values are the number of cycles needed for detection of each genetic marker identified by real-time reverse transcription–polymerase chain reaction testing. A lower Ct value indicates a higher amount of viral RNA. Paired values for each resident are depicted using a different shape. Each resident has two Ct values for the two genetic markers (N1 and N2 nucleocapsid protein gene regions). † Typical symptoms include fever, cough, and shortness of breath. § Atypical symptoms include chills, malaise, sore throat, increased confusion, rhinorrhea or nasal congestion, myalgia, dizziness, headache, nausea, and diarrhea. The figure is a scatter plot showing the cycle threshold values for residents of a long-term care skilled nursing facility with positive test results for SARS-CoV-2 by real-time reverse transcription–polymerase chain reaction on March 13, 2020 (n = 23), by symptom status at time of test, in facility A, King County, Washington. Discussion Sixteen days after introduction of SARS-CoV-2 into facility A, facility-wide testing identified a 30.3% prevalence of infection among residents, indicating very rapid spread, despite early adoption of infection prevention and control measures. Approximately half of all residents with positive test results did not have any symptoms at the time of testing, suggesting that transmission from asymptomatic and presymptomatic residents, who were not recognized as having SARS-CoV-2 infection and therefore not isolated, might have contributed to further spread. Similarly, studies have shown that influenza in the elderly, including those living in SNFs, often manifests as few or atypical symptoms, delaying diagnosis and contributing to transmission ( 6 – 8 ). These findings have important implications for infection control. Current interventions for preventing SARS-CoV-2 transmission primarily rely on presence of signs and symptoms to identify and isolate residents or patients who might have COVID-19. If asymptomatic or presymptomatic residents play an important role in transmission in this population at high risk, additional prevention measures merit consideration, including using testing to guide cohorting strategies or using transmission-based precautions for all residents of a facility after introduction of SARS-CoV-2. Limitations in availability of tests might necessitate taking the latter approach at this time. Although these findings do not quantify the relative contributions of asymptomatic or presymptomatic residents to SARS-CoV-2 transmission in facility A, they suggest that these residents have the potential for substantial viral shedding. Low Ct values, which indicate large quantities of viral RNA, were identified for most of these residents, and there was no statistically significant difference in distribution of Ct values among the symptom status groups. Similar Ct values were reported in asymptomatic adults in China who were known to transmit SARS-CoV-2 ( 9 ). Studies to determine the presence of viable virus from these specimens are currently under way. SNFs have additional infection prevention and control challenges compared with those of assisted living or independent living long-term care facilities. For example, SNF residents might be in shared rooms rather than individual apartments, and there is often prolonged and close contact between residents and health care providers related to the residents’ medical conditions and cognitive function. The index patient in this outbreak was a health care provider, which might have contributed to rapid spread in the facility. In addition, health care personnel in all types of long-term care facilities might have limited experience with proper use of PPE. Symptom ascertainment and room isolation can be exceptionally challenging in elderly residents with neurologic conditions, including dementia. In addition, symptoms of COVID-19 are common and might have multiple etiologies in this population; 24.5% of facility A residents with negative test results for SARS-CoV-2 reported typical or atypical symptoms. The findings in this report are subject to at least two limitations. First, accurate symptom ascertainment in persons with cognitive impairment and other disabilities is challenging; however, this limitation is estimated to be representative of symptom data collected in most SNFs, and thus, these findings might be generalizable. Second, because this analysis was conducted among residents of an SNF, it is not known whether findings apply to the general population, including younger persons, those without underlying medical conditions, or similarly aged populations in the general community. This analysis suggests that symptom screening could initially fail to identify approximately one half of SNF residents with SARS-CoV-2 infection. Unrecognized asymptomatic and presymptomatic infections might contribute to transmission in these settings. During the current COVID-19 pandemic, SNFs and all long-term care facilities should take proactive steps to prevent introduction of SARS-CoV-2, including restricting visitors except in compassionate care situations, restricting nonessential personnel from entering the building, asking staff members to monitor themselves for fever and other symptoms, screening all staff members at the beginning of their shift for fever and other symptoms, and supporting staff member sick leave, including for those with mild symptoms ( 3 ). Once a facility has a case of COVID-19, broad strategies should be implemented to prevent transmission, including restriction of resident-to-resident interactions, universal use of facemasks for all health care personnel while in the facility, and if possible, use of CDC-recommended PPE for the care of all residents (i.e., gown, gloves, eye protection, N95 respirator, or, if not available, a face mask) ( 3 ). In settings where PPE supplies are limited, strategies for extended PPE use and limited reuse should be employed ( 4 ). As testing availability improves, consideration might be given to test-based strategies for identifying residents with SARS-CoV-2 infection for the purpose of cohorting, either in designated units within a facility or in a separate facility designated for residents with COVID-19. During the COVID-19 pandemic, collaborative efforts are crucial to protecting the most vulnerable populations. Summary What is already known about this topic? Once SARS-CoV-2 is introduced in a long-term care skilled nursing facility (SNF), rapid transmission can occur. What is added by this report? Following identification of a case of coronavirus disease 2019 (COVID-19) in a health care worker, 76 of 82 residents of an SNF were tested for SARS-CoV-2; 23 (30.3%) had positive test results, approximately half of whom were asymptomatic or presymptomatic on the day of testing. What are the implications for public health practice? Symptom-based screening of SNF residents might fail to identify all SARS-CoV-2 infections. Asymptomatic and presymptomatic SNF residents might contribute to SARS-CoV-2 transmission. Once a facility has confirmed a COVID-19 case, all residents should be cared for using CDC-recommended personal protective equipment (PPE), with considerations for extended use or reuse of PPE as needed.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients

          To the Editor: The 2019 novel coronavirus (SARS-CoV-2) epidemic, which was first reported in December 2019 in Wuhan, China, and has been declared a public health emergency of international concern by the World Health Organization, may progress to a pandemic associated with substantial morbidity and mortality. SARS-CoV-2 is genetically related to SARS-CoV, which caused a global epidemic with 8096 confirmed cases in more than 25 countries in 2002–2003. 1 The epidemic of SARS-CoV was successfully contained through public health interventions, including case detection and isolation. Transmission of SARS-CoV occurred mainly after days of illness 2 and was associated with modest viral loads in the respiratory tract early in the illness, with viral loads peaking approximately 10 days after symptom onset. 3 We monitored SARS-CoV-2 viral loads in upper respiratory specimens obtained from 18 patients (9 men and 9 women; median age, 59 years; range, 26 to 76) in Zhuhai, Guangdong, China, including 4 patients with secondary infections (1 of whom never had symptoms) within two family clusters (Table S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). The patient who never had symptoms was a close contact of a patient with a known case and was therefore monitored. A total of 72 nasal swabs (sampled from the mid-turbinate and nasopharynx) (Figure 1A) and 72 throat swabs (Figure 1B) were analyzed, with 1 to 9 sequential samples obtained from each patient. Polyester flock swabs were used for all the patients. From January 7 through January 26, 2020, a total of 14 patients who had recently returned from Wuhan and had fever (≥37.3°C) received a diagnosis of Covid-19 (the illness caused by SARS-CoV-2) by means of reverse-transcriptase–polymerase-chain-reaction assay with primers and probes targeting the N and Orf1b genes of SARS-CoV-2; the assay was developed by the Chinese Center for Disease Control and Prevention. Samples were tested at the Guangdong Provincial Center for Disease Control and Prevention. Thirteen of 14 patients with imported cases had evidence of pneumonia on computed tomography (CT). None of them had visited the Huanan Seafood Wholesale Market in Wuhan within 14 days before symptom onset. Patients E, I, and P required admission to intensive care units, whereas the others had mild-to-moderate illness. Secondary infections were detected in close contacts of Patients E, I, and P. Patient E worked in Wuhan and visited his wife (Patient L), mother (Patient D), and a friend (Patient Z) in Zhuhai on January 17. Symptoms developed in Patients L and D on January 20 and January 22, respectively, with viral RNA detected in their nasal and throat swabs soon after symptom onset. Patient Z reported no clinical symptoms, but his nasal swabs (cycle threshold [Ct] values, 22 to 28) and throat swabs (Ct values, 30 to 32) tested positive on days 7, 10, and 11 after contact. A CT scan of Patient Z that was obtained on February 6 was unremarkable. Patients I and P lived in Wuhan and visited their daughter (Patient H) in Zhuhai on January 11 when their symptoms first developed. Fever developed in Patient H on January 17, with viral RNA detected in nasal and throat swabs on day 1 after symptom onset. We analyzed the viral load in nasal and throat swabs obtained from the 17 symptomatic patients in relation to day of onset of any symptoms (Figure 1C). Higher viral loads (inversely related to Ct value) were detected soon after symptom onset, with higher viral loads detected in the nose than in the throat. Our analysis suggests that the viral nucleic acid shedding pattern of patients infected with SARS-CoV-2 resembles that of patients with influenza 4 and appears different from that seen in patients infected with SARS-CoV. 3 The viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients, which suggests the transmission potential of asymptomatic or minimally symptomatic patients. These findings are in concordance with reports that transmission may occur early in the course of infection 5 and suggest that case detection and isolation may require strategies different from those required for the control of SARS-CoV. How SARS-CoV-2 viral load correlates with culturable virus needs to be determined. Identification of patients with few or no symptoms and with modest levels of detectable viral RNA in the oropharynx for at least 5 days suggests that we need better data to determine transmission dynamics and inform our screening practices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — United States, February 12–March 16, 2020

            On March 18, 2020, this report was posted online as an MMWR Early Release. Globally, approximately 170,000 confirmed cases of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) have been reported, including an estimated 7,000 deaths in approximately 150 countries ( 1 ). On March 11, 2020, the World Health Organization declared the COVID-19 outbreak a pandemic ( 2 ). Data from China have indicated that older adults, particularly those with serious underlying health conditions, are at higher risk for severe COVID-19–associated illness and death than are younger persons ( 3 ). Although the majority of reported COVID-19 cases in China were mild (81%), approximately 80% of deaths occurred among adults aged ≥60 years; only one (0.1%) death occurred in a person aged ≤19 years ( 3 ). In this report, COVID-19 cases in the United States that occurred during February 12–March 16, 2020 and severity of disease (hospitalization, admission to intensive care unit [ICU], and death) were analyzed by age group. As of March 16, a total of 4,226 COVID-19 cases in the United States had been reported to CDC, with multiple cases reported among older adults living in long-term care facilities ( 4 ). Overall, 31% of cases, 45% of hospitalizations, 53% of ICU admissions, and 80% of deaths associated with COVID-19 were among adults aged ≥65 years with the highest percentage of severe outcomes among persons aged ≥85 years. In contrast, no ICU admissions or deaths were reported among persons aged ≤19 years. Similar to reports from other countries, this finding suggests that the risk for serious disease and death from COVID-19 is higher in older age groups. Data from cases reported from 49 states, the District of Columbia, and three U.S. territories ( 5 ) to CDC during February 12–March 16 were analyzed. Cases among persons repatriated to the United States from Wuhan, China and from Japan (including patients repatriated from cruise ships) were excluded. States and jurisdictions voluntarily reported data on laboratory-confirmed cases of COVID-19 using previously developed data collection forms ( 6 ). The cases described in this report include both COVID-19 cases confirmed by state or local public health laboratories as well as those with a positive test at the state or local public health laboratories and confirmation at CDC. No data on serious underlying health conditions were available. Data on these cases are preliminary and are missing for some key characteristics of interest, including hospitalization status (1,514), ICU admission (2,253), death (2,001), and age (386). Because of these missing data, the percentages of hospitalizations, ICU admissions, and deaths (case-fatality percentages) were estimated as a range. The lower bound of these percentages was estimated by using all cases within each age group as denominators. The corresponding upper bound of these percentages was estimated by using only cases with known information on each outcome as denominators. As of March 16, a total of 4,226 COVID-19 cases had been reported in the United States, with reports increasing to 500 or more cases per day beginning March 14 (Figure 1). Among 2,449 patients with known age, 6% were aged ≥85, 25% were aged 65–84 years, 18% each were aged 55–64 years and 45–54 years, and 29% were aged 20–44 years (Figure 2). Only 5% of cases occurred in persons aged 0–19 years. FIGURE 1 Number of new coronavirus disease 2019 (COVID-19) cases reported daily*,† (N = 4,226) — United States, February 12–March 16, 2020 * Includes both COVID-19 cases confirmed by state or local public health laboratories, as well as those testing positive at the state or local public health laboratories and confirmed at CDC. † Cases identified before February 28 were aggregated and reported during March 1–3. The figure is a histogram, an epidemiologic curve showing 4,226 coronavirus disease 2019 (COVID-19) cases, by date of case report, in the United States during February 12–March 16, 2020. Figure 2 Coronavirus disease 2019 (COVID-19) hospitalizations,* intensive care unit (ICU) admissions, † and deaths, § by age group — United States, February 12– March 16, 2020 * Hospitalization status missing or unknown for 1,514 cases. † ICU status missing or unknown for 2,253 cases. § Illness outcome or death missing or unknown for 2,001 cases. The figure is a bar chart showing the number of coronavirus disease 2019 (COVID-19) hospitalizations, intensive care unit admissions, and deaths, by age group, in the United States during February 12– March 16, 2020. Among 508 (12%) patients known to have been hospitalized, 9% were aged ≥85 years, 36% were aged 65–84 years, 17% were aged 55–64 years, 18% were 45–54 years, and 20% were aged 20–44 years. Less than 1% of hospitalizations were among persons aged ≤19 years (Figure 2). The percentage of persons hospitalized increased with age, from 2%–3% among persons aged ≤19 years, to ≥31% among adults aged ≥85 years. (Table). TABLE Hospitalization, intensive care unit (ICU) admission, and case–fatality percentages for reported COVID–19 cases, by age group —United States, February 12–March 16, 2020 Age group (yrs) (no. of cases) %* Hospitalization ICU admission Case-fatality 0–19 (123) 1.6–2.5 0 0 20–44 (705) 14.3–20.8 2.0–4.2 0.1–0.2 45–54 (429) 21.2–28.3 5.4–10.4 0.5–0.8 55–64 (429) 20.5–30.1 4.7–11.2 1.4–2.6 65–74 (409) 28.6–43.5 8.1–18.8 2.7–4.9 75–84 (210) 30.5–58.7 10.5–31.0 4.3–10.5 ≥85 (144) 31.3–70.3 6.3–29.0 10.4–27.3 Total (2,449) 20.7–31.4 4.9–11.5 1.8–3.4 * Lower bound of range = number of persons hospitalized, admitted to ICU, or who died among total in age group; upper bound of range = number of persons hospitalized, admitted to ICU, or who died among total in age group with known hospitalization status, ICU admission status, or death. Among 121 patients known to have been admitted to an ICU, 7% of cases were reported among adults ≥85 years, 46% among adults aged 65–84 years, 36% among adults aged 45–64 years, and 12% among adults aged 20–44 years (Figure 2). No ICU admissions were reported among persons aged ≤19 years. Percentages of ICU admissions were lowest among adults aged 20–44 years (2%–4%) and highest among adults aged 75–84 years (11%–31%) (Table). Among 44 cases with known outcome, 15 (34%) deaths were reported among adults aged ≥85 years, 20 (46%) among adults aged 65–84 years, and nine (20%) among adults aged 20–64 years. Case-fatality percentages increased with increasing age, from no deaths reported among persons aged ≤19 years to highest percentages (10%–27%) among adults aged ≥85 years (Table) (Figure 2). Discussion Since February 12, 4,226 COVID-19 cases were reported in the United States; 31% of cases, 45% of hospitalizations, 53% of ICU admissions, and 80% of deaths occurred among adults aged ≥65 years with the highest percentage of severe outcomes among persons aged ≥85 years. These findings are similar to data from China, which indicated >80% of deaths occurred among persons aged ≥60 years ( 3 ). These preliminary data also demonstrate that severe illness leading to hospitalization, including ICU admission and death, can occur in adults of any age with COVID-19. In contrast, persons aged ≤19 years appear to have milder COVID-19 illness, with almost no hospitalizations or deaths reported to date in the United States in this age group. Given the spread of COVID-19 in many U.S. communities, CDC continues to update current recommendations and develop new resources and guidance, including for adults aged ≥65 years as well as those involved in their care ( 7 , 8 ). Approximately 49 million U.S. persons are aged ≥65 years ( 9 ), and many of these adults, who are at risk for severe COVID-19–associated illness, might depend on services and support to maintain their health and independence. To prepare for potential COVID-19 illness among persons at high risk, family members and caregivers of older adults should know what medications they are taking and ensure that food and required medical supplies are available. Long-term care facilities should be particularly vigilant to prevent the introduction and spread of COVID-19 ( 10 ). In addition, clinicians who care for adults should be aware that COVID-19 can result in severe disease among persons of all ages. Persons with suspected or confirmed COVID-19 should monitor their symptoms and call their provider for guidance if symptoms worsen or seek emergency care for persistent severe symptoms. Additional guidance is available for health care providers on CDC’s website (https://www.cdc.gov/coronavirus/2019-nCoV/hcp/index.html). This report describes the current epidemiology of COVID-19 in the United States, using preliminary data. The findings in this report are subject to at least five limitations. First, data were missing for key variables of interest. Data on age and outcomes, including hospitalization, ICU admission, and death, were missing for 9%–53% of cases, which likely resulted in an underestimation of these outcomes. Second, further time for follow-up is needed to ascertain outcomes among active cases. Third, the initial approach to testing was to identify patients among those with travel histories or persons with more severe disease, and these data might overestimate the prevalence of severe disease. Fourth, data on other risk factors, including serious underlying health conditions that could increase risk for complications and severe illness, were unavailable at the time of this analysis. Finally, limited testing to date underscores the importance of ongoing surveillance of COVID-19 cases. Additional investigation will increase the understanding about persons who are at risk for severe illness and death from COVID-19 and inform clinical guidance and community-based mitigation measures.* The risk for serious disease and death in COVID-19 cases among persons in the United States increases with age. Social distancing is recommended for all ages to slow the spread of the virus, protect the health care system, and help protect vulnerable older adults. Further, older adults should maintain adequate supplies of nonperishable foods and at least a 30-day supply of necessary medications, take precautions to keep space between themselves and others, stay away from those who are sick, avoid crowds as much as possible, avoid cruise travel and nonessential air travel, and stay home as much as possible to further reduce the risk of being exposed ( 7 ). Persons of all ages and communities can take actions to help slow the spread of COVID-19 and protect older adults. † Summary What is already known about this topic? Early data from China suggest that a majority of coronavirus disease 2019 (COVID-19) deaths have occurred among adults aged ≥60 years and among persons with serious underlying health conditions. What is added by this report? This first preliminary description of outcomes among patients with COVID-19 in the United States indicates that fatality was highest in persons aged ≥85, ranging from 10% to 27%, followed by 3% to 11% among persons aged 65–84 years, 1% to 3% among persons aged 55-64 years, <1% among persons aged 20–54 years, and no fatalities among persons aged ≤19 years. What are the implications for public health practice? COVID-19 can result in severe disease, including hospitalization, admission to an intensive care unit, and death, especially among older adults. Everyone can take actions, such as social distancing, to help slow the spread of COVID-19 and protect older adults from severe illness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              COVID-19 in a Long-Term Care Facility — King County, Washington, February 27–March 9, 2020

              On February 28, 2020, a case of coronavirus disease (COVID-19) was identified in a woman resident of a long-term care skilled nursing facility (facility A) in King County, Washington.* Epidemiologic investigation of facility A identified 129 cases of COVID-19 associated with facility A, including 81 of the residents, 34 staff members, and 14 visitors; 23 persons died. Limitations in effective infection control and prevention and staff members working in multiple facilities contributed to intra- and interfacility spread. COVID-19 can spread rapidly in long-term residential care facilities, and persons with chronic underlying medical conditions are at greater risk for COVID-19–associated severe disease and death. Long-term care facilities should take proactive steps to protect the health of residents and preserve the health care workforce by identifying and excluding potentially infected staff members and visitors, ensuring early recognition of potentially infected patients, and implementing appropriate infection control measures. On February 27, Public Health – Seattle and King County (PHSKC) was notified by a local health care provider of a patient whose symptom history and clinical presentation met the revised testing criteria † for COVID-19, which included testing of persons with severe respiratory illness of unknown etiology ( 1 ). The patient was a woman aged 73 years with a history of coronary artery disease, insulin-dependent type II diabetes mellitus, obesity, chronic kidney disease, hypertension, and congestive heart failure, who resided in facility A along with approximately 130 residents who were cared for by 170 health care personnel. Beginning in mid-February, the facility had experienced a cluster of febrile respiratory illnesses. Rapid influenza test results were obtained from several residents; all were negative. The patient had cough, fever, and shortness of breath requiring oxygen for 5 days at facility A. She reported no travel or known contact with anyone with COVID-19. On February 24, she was transported to a local hospital because of worsening respiratory symptoms and hypoxemia. Upon hospital admission, the patient was febrile to 103.3°F (39.6°C), tachycardic, and was found to have hypoxemic respiratory failure. On February 25, she required intubation and mechanical ventilation. Computed tomography scan showed diffuse bilateral infiltrates; however, multiplex viral respiratory panel and bacterial cultures of sputum and bronchoalveolar lavage fluid were negative. Four days after hospital admission, nasopharyngeal and oropharyngeal swabs and sputum specimens were collected to test for SARS-CoV-2; results were reported positive for all specimens on February 28. The patient died on March 2. Following notification of the index case of COVID-19, PHSKC and CDC immediately began investigating the cluster of respiratory illness in facility A to collect information on symptoms, severity, comorbidities, travel history, and close contacts to known COVID-19 cases by interviewing patients or a proxy for cases in which the patient could not be interviewed. Diagnostic testing by real-time reverse transcription–polymerase chain reaction (RT-PCR) ( 2 – 5 ) was performed for patients and staff members meeting clinical case criteria for COVID-19 ( 1 ). As of March 9, a total of 129 COVID-19 cases were confirmed among facility residents (81 of approximately 130), staff members, including health care personnel (34), and visitors (14). Health care personnel with confirmed COVID-19 included the following occupations: physical therapist, occupational therapist assistant, environmental care worker, nurse, certified nursing assistant, health information officer, physician, and case manager. Overall, 111 (86%) cases occurred among residents of King County (81 facility A residents, 17 staff members, and 13 visitors) and 18 (14%) among residents of Snohomish County (directly north of King County) (17 staff members and one visitor). Reported symptom onset dates for facility residents and staff members ranged from February 16 to March 5. The median patient age was 81 years (range = 54–100 years) among facility residents, 42.5 years (range = 22–79 years) among staff members, and 62.5 years (range = 52–88 years) among visitors; 84 (65.1%) patients were women (Table). Overall, 56.8% of facility A residents, 35.7% of visitors, and 5.9% of staff members with COVID-19 were hospitalized. Preliminary case fatality rates among residents and visitors as of March 9 were 27.2% and 7.1%, respectively; no deaths occurred among staff members. The most common chronic underlying conditions among facility residents were hypertension (69.1%), cardiac disease (56.8%), renal disease (43.2%), diabetes (37.0%), obesity (33.3%), and pulmonary disease (32.1%). Six residents and one visitor had hypertension as their only chronic underlying condition. TABLE Characteristics of patients with COVID-19 epidemiologically linked to facility A among residents of King and Snohomish counties — Washington, February 27–March 9, 2020 Characteristics No. (%) Resident (n = 81) Health care personnel (n = 34) Visitor (n = 14) Total (n = 129) Median age, yrs (range) 81 (54–100) 42.5 (22–79) 62.5 (52–88) 71 (22–100) Sex Men 28 (34.6) 7 (20.6) 10 (71.4) 45 (34.9) Women 53 (65.4) 27 (79.4) 4 (28.6) 84 (65.1) Hospitalized Yes 46 (56.8) 2 (5.9) 5 (35.7) 53 (41.1) No 3 (3.7) 30 (88.2) 9 (64.3) 42 (32.6) Unknown 32 (39.5) 2 (5.9) 0 34 (26.4) Died Yes 22 (27.2) 0 1 (7.1) 23 (17.8) No 59 (72.8) 34 (100.0) 13 (92.9) 106 (82.2) Chronic underlying conditions*,† Hypertension§ 56 (69.1) 0 2 (14.3) 58 (45.0) Cardiac disease 46 (56.8) 3 (8.8) 2 (14.3) 51 (39.5) Renal disease 35 (43.2) 0 1 (7.1) 36 (27.9) Diabetes mellitus 30 (37.0) 3 (8.8) 1 (7.1) 34 (26.4) Obesity 27 (33.3) 0 3 (21.4) 30 (23.3) Pulmonary disease 26 (32.1) 2 (5.9) 2 (14.3) 30 (23.3) Malignancy 11 (13.6) 0 0 11 (8.5) Immunocompromised 8 (9.9) 0 0 8 (6.2) Liver disease 5 (6.2) 0 0 5 (3.9) * Percentages represent the number with information on the comorbidity, irrespective of missing data. † Data on chronic underlying conditions were missing for four health care personnel and two visitors with COVID-19. § Hypertension was the only reported chronic underlying condition for 6 residents and 1 visitor with COVID-19. As part of the response effort, approximately 100 long-term care facilities in King County were contacted through an emailed survey using REDCap ( 6 ), and information was requested about residents or staff members known to have COVID-19 or clusters of respiratory illness among residents and staff members. In addition, countywide databases of emergency medical service transfers from long-term care facilities to acute care facilities were reviewed daily for evidence of cases or clusters of serious respiratory illness. Routine active surveillance reports to PHSKC for influenza-like illness clusters from long-term care facilities were employed to identify clusters of illness consistent with COVID-19. All long-term care facilities with evidence of a cluster of respiratory illness were contacted by telephone for additional information, including infection control strategies in place and availability of personal protective equipment (PPE). Based on this information, the long-term care facilities were prioritized by risk for COVID-19 introduction and spread, and highest priority facilities were visited by response personnel for provision of emergency on-site testing and infection control assessment, support, and training. As of March 9, at least eight other King County skilled nursing and assisted living facilities had reported one or more confirmed COVID-19 cases. Information received from the survey and on-site visits identified factors that likely contributed to the vulnerability of these facilities, including 1) staff members who worked while symptomatic; 2) staff members who worked in more than one facility; 3) inadequate familiarity and adherence to standard, droplet, and contact precautions and eye protection recommendations; 4) challenges to implementing infection control practices including inadequate supplies of PPE and other items (e.g., alcohol-based hand sanitizer) § ; 5) delayed recognition of cases because of low index of suspicion, limited testing availability, and difficulty identifying persons with COVID-19 based on signs and symptoms alone. Discussion These findings demonstrate that outbreaks of COVID-19 in long-term care facilities can have a critical impact on vulnerable older adults. In Washington, local and state authorities implemented comprehensive prevention measures for long-term care facilities ( 7 – 9 ) that included 1) implementation of symptom screening and restriction policies for visitors and nonessential personnel; 2) active screening of health care personnel, including measurement and documentation of body temperature and ascertainment of respiratory symptoms to identify and exclude symptomatic workers; 3) symptom monitoring of residents; 4) social distancing, including restricting resident movement and group activities; 5) staff training on infection control and PPE use; and 6) establishment of plans to address local PPE shortages, including county and state coordination of supply chains and stockpile releases to meet needs. These strategies require coordination and support from public health authorities, partnering health care systems, regulatory agencies, and their respective governing bodies ( 8 – 10 ). The findings in this report suggest that once COVID-19 has been introduced into a long-term care facility, it has the potential to result in high attack rates among residents, staff members, and visitors. In the context of rapidly escalating COVID-19 outbreaks in much of the United States, it is critical that long-term care facilities implement active measures to prevent introduction of COVID-19. Measures to consider include identifying and excluding symptomatic staff members, restricting visitation except in compassionate care situations, and strengthening infection prevention and control guidance and adherence ( 7 , 9 , 10 ). ¶ Substantial morbidity and mortality might be averted if all long-term care facilities take steps now to prevent exposure of their residents to COVID-19. The underlying health conditions and advanced age of many long-term care facility residents and the shared location of patients in one facility places these persons at risk for severe morbidity and death. Rapid and sustained public health interventions focusing on surveillance, infection control, and mitigation efforts are resource-intensive but are critical to curtailing COVID-19 transmission and decreasing the impact on vulnerable populations, such as residents of long-term care facilities, and the community at large. As this pandemic expands, continued implementation of public health measures targeting vulnerable populations such as residents of long-term care facilities ( 8 ) and health care personnel will be critical. As public health measures are continually implemented, public information needs will only grow. To provide information for patients and families as well as communicate more broadly to all stakeholders, public officials and other community leaders need to work together to encourage everyone to understand and adhere to recommended guidelines to manage this outbreak. Summary What is already known about this topic? Coronavirus disease (COVID-19) can cause severe illness and death, particularly among older adults with chronic health conditions. What is added by this report? Introduction of COVID-19 into a long-term residential care facility in Washington resulted in cases among 81 residents, 34 staff members, and 14 visitors; 23 persons died. Limitations in effective infection control and prevention and staff members working in multiple facilities contributed to intra- and interfacility spread. What are the implications for public health practice? Long-term care facilities should take proactive steps to protect the health of residents and preserve the health care workforce by identifying and excluding potentially infected staff members, restricting visitation except in compassionate care situations, ensuring early recognition of potentially infected patients, and implementing appropriate infection control measures.
                Bookmark

                Author and article information

                Contributors
                Journal
                MMWR Morb Mortal Wkly Rep
                MMWR Morb. Mortal. Wkly. Rep
                WR
                Morbidity and Mortality Weekly Report
                Centers for Disease Control and Prevention
                0149-2195
                1545-861X
                03 April 2020
                03 April 2020
                : 69
                : 13
                : 377-381
                Affiliations
                CDC COVID-19 Investigation Team; Epidemic Intelligence Service, CDC; Laboratory Leadership Service, CDC; Public Health – Seattle & King County; Washington State Public Health Laboratory.
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County
                Public Health – Seattle & King County.
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC
                CDC.
                Author notes
                Corresponding author: Anne Kimball, opu7@ 123456cdc.gov , 770-488-7100.
                Article
                mm6913e1
                10.15585/mmwr.mm6913e1
                7119514
                32240128
                8dfbc0d5-76ff-40a7-86e3-9a6af874fbda

                All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

                History
                Categories
                Full Report

                Comments

                Comment on this article