12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Endogenous GLP-1 and GIP in Beta Cell Compensatory Responses to Insulin Resistance and Cellular Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Role of GLP-1 and GIP in beta cell compensatory responses to beta cell attack and insulin resistance were examined in C57BL/6 mice lacking functional receptors for GLP-1 and GIP. Mice were treated with multiple low dose streptozotocin or hydrocortisone. Islet parameters were assessed by immunohistochemistry and hormone measurements were determined by specific enzyme linked immunoassays. Wild-type streptozotocin controls exhibited severe diabetes, irregularly shaped islets with lymphocytic infiltration, decreased Ki67/TUNEL ratio with decreased beta cell and increased alpha cell areas. GLP-1 and GIP were co-expressed with glucagon and numbers of alpha cells mainly expressing GLP-1 were increased. In contrast, hydrocortisone treatment and induction of insulin resistance increased islet numbers and area, with enhanced beta cell replication, elevated mass of beta and alpha cells, together with co-expression of GLP-1 and GIP with glucagon in islets. The metabolic responses to streptozotocin in GLP-1RKO and GIPRKO mice were broadly similar to C57BL/6 controls, although decreases in islet numbers and size were more severe. In contrast, both groups of mice lacking functional incretin receptors displayed substantially impaired islet adaptations to insulin resistance induced by hydrocortisone, including marked curtailment of expansion of islet area, beta cell mass and islet number. Our observations cannot be explained by simple changes in circulating incretin concentrations, suggesting that intra-islet GLP-1 and GIP make a significant contribution to islet adaptation, particularly expansion of beta cell mass and compensatory islet compensation to hydrocortisone and insulin resistance.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The role of gut hormones in glucose homeostasis.

          The gastrointestinal tract has a crucial role in the control of energy homeostasis through its role in the digestion, absorption, and assimilation of ingested nutrients. Furthermore, signals from the gastrointestinal tract are important regulators of gut motility and satiety, both of which have implications for the long-term control of body weight. Among the specialized cell types in the gastrointestinal mucosa, enteroendocrine cells have important roles in regulating energy intake and glucose homeostasis through their actions on peripheral target organs, including the endocrine pancreas. This article reviews the biological actions of gut hormones regulating glucose homeostasis, with an emphasis on mechanisms of action and the emerging therapeutic roles of gut hormones for the treatment of type 2 diabetes mellitus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets.

            Glucagon-like peptide 1 (GLP-1) is a major incretin, mainly produced by the intestinal L cells, with beneficial actions on pancreatic beta cells. However, while in vivo only very small amounts of GLP-1 reach the pancreas in bioactive form, some observations indicate that GLP-1 may also be produced in the islets. We performed comprehensive morphological, functional and molecular studies to evaluate the presence and various features of a local GLP-1 system in human pancreatic islet cells, including those from type 2 diabetic patients. The presence of insulin, glucagon, GLP-1, proconvertase (PC) 1/3 and PC2 was determined in human pancreas by immunohistochemistry with confocal microscopy. Islets were isolated from non-diabetic and type 2 diabetic donors. GLP-1 protein abundance was evaluated by immunoblotting and matrix-assisted laser desorption-ionisation-time of flight (MALDI-TOF) mass spectrometry. Single alpha and beta cell suspensions were obtained by enzymatic dissociation and FACS sorting. Glucagon and GLP-1 release were measured in response to nutrients. Confocal microscopy showed the presence of GLP-1-like and PC1/3 immunoreactivity in subsets of alpha cells, whereas GLP-1 was not observed in beta cells. The presence of GLP-1 in isolated islets was confirmed by immunoblotting, followed by mass spectrometry. Isolated islets and alpha (but not beta) cell fractions released GLP-1, which was regulated by glucose and arginine. PC1/3 (also known as PCSK1) gene expression was shown in alpha cells. GLP-1 release was significantly higher from type 2 diabetic than from non-diabetic isolated islets. We have shown the presence of a functionally competent GLP-1 system in human pancreatic islets, which resides in alpha cells and might be modulated by type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice.

              To investigate the effect of the ob gene in the heterozygous condition, plasma glucose and insulin responses of adult heterozygous lean (ob/+) mice were compared with mice of the homozygous lean (+/+) and homozygous obese (ob/ob) genotypes. The ob/+ mice consumed 24% more food than +/+ mice although body weights were similar. Plasma glucose and insulin concentrations were respectively 16% and 176% higher in ob/+ mice than +/+ mice in the freely fed state, and 44% and 88% higher during glucose tolerance tests. In 24 hour fasted ob/+ mice, plasma glucose concentrations were 23% higher than +/+ mice but plasma insulin concentrations were not significantly different. Arginine produced a greater insulin response (172%) and a greater fall in glycaemia (200%) in ob/+ mice. A significant difference in the hypoglycaemic effect of insulin in ob/+ and +/+ mice was not observed. These results demonstrate an effect of the ob gene on glucose homeostasis in heterozygous lean (ob/+) mice. The abnormalities were qualitatively similar but considerably less severe than those in ob/ob mice, suggesting that ob/+ mice might prove useful to study factors predisposing to inappropriate hyperglycaemia.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                26 June 2014
                : 9
                : 6
                : e101005
                Affiliations
                [1 ]SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland
                [2 ]Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
                University of Ulster, United Kingdom
                Author notes

                Competing Interests: This study was supported in part by an EFSD/Boehringer Ingelheim Grant. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

                Conceived and designed the experiments: PRF. Performed the experiments: SV RCM. Analyzed the data: SV RCM. Contributed reagents/materials/analysis tools: SV RCM PRF. Contributed to the writing of the manuscript: SV RCM PRF. Contributed to interpretation of data and revised the manuscript for intellectual content: BT.

                Article
                PONE-D-14-16983
                10.1371/journal.pone.0101005
                4072716
                24967820
                8dfc5d38-850c-416e-8c1c-f413eea74a7e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 April 2014
                : 2 June 2014
                Page count
                Pages: 9
                Funding
                The study was supported in part by an EFSD/Boehringer Ingelheim Grant and a research scholarship to RCM from Department of Education and Learning, Northern Ireland. Professor DJ Drucker is thanked for provision of GLP-1RKO mice. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Physiology
                Endocrine Physiology
                Insulin Resistance
                Medicine and Health Sciences
                Metabolic Disorders
                Diabetes Mellitus
                Type 1 Diabetes
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article