0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Absorb BRS for in-stent restenosis: the final bow before (scaffold) collapse?

      editorial
      ,
      Open Heart
      BMJ Publishing Group
      coronary artery disease, coronary stenosis, percutaneous coronary intervention

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial.

          No medium-term data are available on the random comparison between everolimus-eluting bioresorbable vascular scaffolds and everolimus-eluting metallic stents. The study aims to demonstrate two mechanistic properties of the bioresorbable scaffold: increase in luminal dimensions as a result of recovered vasomotion of the scaffolded vessel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment.

            Despite the reduction in late thrombotic events with newer-generation drug-eluting stents (DES), late stent failure remains a concern following stent placement. In-stent neoatherosclerosis has emerged as an important contributing factor to late vascular complications including very late stent thrombosis and late in-stent restenosis. Histologically, neoatherosclerosis is characterized by accumulation of lipid-laden foamy macrophages within the neointima with or without necrotic core formation and/or calcification. The development of neoatherosclerosis may occur in months to years following stent placement, whereas atherosclerosis in native coronary arteries develops over decades. Pathologic and clinical imaging studies have demonstrated that neoatherosclerosis occurs more frequently and at an earlier time point in DES when compared with bare metal stents, and increases with time in both types of implant. Early development of neoatherosclerosis has been identified not only in first-generation DES but also in second-generation DES. The mechanisms underlying the rapid development of neoatherosclerosis remain unknown; however, either absence or abnormal endothelial functional integrity following stent implantation may contribute to this process. In-stent plaque rupture likely accounts for most thrombotic events associated with neoatherosclerosis, while it may also be a substrate of in-stent restenosis as thrombosis may occur either symptomatically or asymptomatically. Intravascular optical coherence tomography is capable of detecting neoatherosclerosis; however, the shortcomings of this modality must be recognized. Future studies should assess the impact of iterations in stent technology and risk factor modification on disease progression. Similarly, refinements in imaging techniques are also warranted that will permit more reliable detection of neoatherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-Year Outcomes With the Absorb Bioresorbable Scaffold

              The Absorb bioresorbable vascular scaffold (BVS) completely resorbs within 3 years after coronary artery implantation. The safety and effectiveness of BVS through this critical 3-year period have not been characterized.
                Bookmark

                Author and article information

                Journal
                Open Heart
                Open Heart
                openhrt
                openheart
                Open Heart
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2053-3624
                2021
                14 October 2021
                : 8
                : 2
                : e001838
                Affiliations
                [1]departmentCardiology , University and Hospital Fribourg , Fribourg, Switzerland
                Author notes
                [Correspondence to ] Dr Diego Arroyo; diego.arroyo@ 123456h-fr.ch
                Author information
                http://orcid.org/0000-0003-1221-2978
                Article
                openhrt-2021-001838
                10.1136/openhrt-2021-001838
                8522659
                34649998
                8e0433f1-6824-4f61-86e3-7edb2fd112c8
                © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 23 September 2021
                Categories
                Editorial
                1506
                Custom metadata
                unlocked

                coronary artery disease,coronary stenosis,percutaneous coronary intervention

                Comments

                Comment on this article