23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Co-occurrence of Antibiotic and Heavy Metal Resistance and Sequence Type Diversity of Vibrio parahaemolyticus Isolated From Penaeus vannamei at Freshwater Farms, Seawater Farms, and Markets in Zhejiang Province, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vibrio parahaemolyticus is the leading cause of seafood-borne bacterial poisoning in China and is a threat to human health worldwide. The aim of this study was to assess the antibiotic resistance profiles and distribution of heavy metal resistance of V. parahaemolyticus isolates from Penaeus vannamei from freshwater farms, seawater farms, and their corresponding markets in Zhejiang, China and to assess the relationship between multidrug resistance (MDR) and multi-heavy metal resistance (MHMR). Of the 360 P. vannamei samples that we tested, 90 (25.00%) were V. parahaemolyticus positive, but the occurrence of pathogenic isolates carrying the toxin genes tdh (4.44%) and trh (3.33%) was low. None of the tested isolates harbored both the tdh and trh genes. However, antibiotic resistance profiles varied among different sampling locations, levels of resistance to the antibiotics ampicillin (76.67%) and streptomycin (74.44%) were high overall, and MDR isolates were common (40.00% of all isolates). Heavy metal resistance patterns were similar among the different sampling locations. Overall, the majority of V. parahaemolyticus isolates displayed tolerance to Cd 2+ (60.00%), and fewer were resistant to Cu 2+ (40.00%), Zn 2+ (38.89%), Ni 2+ (24.44%), Cr 3+ (14.44%), and Co 2+ (8.89%). In addition, 34.44% (31/90) of isolates tested in this study were found to be MHMR. Using Pearson’s correlation analysis, MDR and MHMR were found to be positively correlated ( P = 0.004; R = 0.759). The 18 V. parahaemolyticus isolates that were both MDR and MHMR represented 18 sequence types, of which 12 were novel to the PubMLST database, and displayed a high level of genetic diversity, suggesting that dissemination may be affected by mobile genetic elements via horizontal gene transfer. However, a low percentage of class 1 integrons without gene cassettes and no class 2 or 3 integrons were detected in the 18 MDR and MHMR isolates or in the 90 V. parahaemolyticus isolates overall. Thus, we suggest that future research focus on elucidating the mechanisms that lead to a high prevalence of resistance determinants in V. parahaemolyticus. The results of this study provide data that will support aquatic animal health management and food safety risk assessments in the aquaculture industry.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution

          Around all human activity, there are zones of pollution with pesticides, heavy metals, pharmaceuticals, personal care products and the microorganisms associated with human waste streams and agriculture. This diversity of pollutants, whose concentration varies spatially and temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly because its host cells can have rapid generation times and it can move between bacteria by horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the agency of human selection. Here we review the literature examining the relationship between anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could serve as a proxy for anthropogenic pollution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants.

            Vibrio parahaemolyticus is recognized as a cause of food-borne gastroenteritis, particularly in the Far East, where raw seafood consumption is high. An unusual increase in admissions of V. parahaemolyticus cases was observed at the Infectious Diseases Hospital in Calcutta, a city in the northeastern part of India, beginning February 1996. Analysis of the strains revealed that a unique serotype, O3:K6, not previously isolated during the surveillance in Calcutta accounted for 50 to 80% of the infections in the following months. After this report, O3:K6 isolates identical to those isolated in Calcutta were reported from food-borne outbreaks and from sporadic cases in Bangladesh, Chile, France, Japan, Korea, Laos, Mozambique, Peru, Russia, Spain, Taiwan, Thailand, and the United States. Other serotypes, such as O4:K68, O1:K25, and O1:KUT (untypeable), that had molecular characteristics identical to that of the O3:K6 serotype were subsequently documented. These serotypes appeared to have diverged from the O3:K6 serotype by alteration of the O:K antigens and were defined as "serovariants" of the O3:K6 isolate. O3:K6 and its serovariants have now spread into Asia, America, Africa, and Europe. This review traces the genesis, virulence features, molecular characteristics, serotype variants, environmental occurrence, and global spread of this unique clone of V. parahaemolyticus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trends in antibiotic resistance genes occurrence in the Haihe River, China.

              The occurrence of antibiotics and antibiotic resistance genes (ARGs) was quantified in water and sediment samples collected from a 72 km stretch of the Haihe River, China. Tetracycline resistance genes (tetW, tetQ, tetO, tetT, tetM, tetB, and tetS) were not detected by quantitative PCR in many samples. In contrast, sul1 and sul2 (coding for sulfonamide resistance) were present at relatively high concentrations in all (38) samples. The highest ARG concentrations detected were (7.8 ± 1.0) × 10(9) copies/g for sul1 and (1.7 ± 0.2) × 10(11) copies/g for sul2, in sediment samples collected during the summer. The corresponding total bacterial concentration (quantified with a universal 16S-rDNA probe) was (3.3 ± 0.4) × 10(12) cells/g. Sul1 and sul2 concentrations in sediments were 120-2000 times higher than that in water, indicating that sediments are an important ARG reservoir in the Haihe River. Statistical analysis indicated a positive correlation between the relative abundance of these ARGs (i.e., sul1/16S-rDNA and sul2/16S-rDNA) and the total concentration of sulfamethoxazole, sulfadiazine, plus sulfachlororyridazine, suggesting that sulfonamides exerted selective pressure for these ARGs. A class 1 integron was implicated in the propagation of sul1. Overall, the widespread distribution of sulfonamide ARGs underscores the need to better understand and mitigate their propagation in the environment and the associated risks to public health.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                26 June 2020
                2020
                : 11
                : 1294
                Affiliations
                Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University , Hangzhou, China
                Author notes

                Edited by: Vincenzina Fusco, Institute of Sciences of Food Production (CNR), Italy

                Reviewed by: Cemal Sandalli, Recep Tayyip Erdoğan University, Turkey; Vengadesh Letchumanan, Monash University, Malaysia

                *Correspondence: Jiehong Fang, fangjh@ 123456cjlu.edu.cn

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.01294
                7333440
                32676056
                8e2bd946-a7d9-4257-8ba6-8528eb638b5f
                Copyright © 2020 Jiang, Yu, Yang, Yu, Wu, Lin, Li, Fang and Zhu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 March 2020
                : 20 May 2020
                Page count
                Figures: 1, Tables: 5, Equations: 0, References: 69, Pages: 12, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                antibiotic resistance,heavy metal resistance,integrons,penaeus vannamei,sequence type diversity,vibrio parahaemolyticus,virulence genes

                Comments

                Comment on this article