1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Resonant Dielectric Metagratings for Response Intensified Optical Sensing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Flat optics with designer metasurfaces.

          Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infrared perfect absorber and its application as plasmonic sensor.

            We experimentally demonstrate a perfect plasmonic absorber at lambda = 1.6 microm. Its polarization-independent absorbance is 99% at normal incidence and remains very high over a wide angular range of incidence around +/-80 degrees. We introduce a novel concept to utilize this perfect absorber as plasmonic sensor for refractive index sensing. This sensing strategy offers great potential to maintain the performance of localized surface plasmon sensors even in nonlaboratory environments due to its simple and robust measurement scheme.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optically resonant dielectric nanostructures

              Rapid progress in nanophotonics is driven by the ability of optically resonant nanostructures to enhance near-field effects controlling far-field scattering through intermodal interference. A majority of such effects are usually associated with plasmonic nanostructures. Recently, a new branch of nanophotonics has emerged that seeks to manipulate the strong, optically induced electric and magnetic Mie resonances in dielectric nanoparticles with high refractive index. In the design of optical nanoantennas and metasurfaces, dielectric nanoparticles offer the opportunity for reducing dissipative losses and achieving large resonant enhancement of both electric and magnetic fields. We review this rapidly developing field and demonstrate that the magnetic response of dielectric nanostructures can lead to novel physical effects and applications.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                January 2022
                August 04 2021
                January 2022
                : 32
                : 3
                : 2103143
                Affiliations
                [1 ]ARC Centre of Excellence Transformative Meta‐Optical System (TMOS) Research School of Physics The Australian National University Canberra ACT 2601 Australia
                [2 ]Advanced Optics and Photonics Laboratory Department of Engineering School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK
                [3 ]Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
                [4 ]Nanotechnology Research Laboratory Faculty of Engineering University of Sydney Sydney NSW 2006 Australia
                [5 ]School of Engineering and Information Technology University of New South Wales Canberra ACT 2600 Australia
                Article
                10.1002/adfm.202103143
                8e315490-1f2c-49ad-9460-118b30620351
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article