32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization and Ultrastructural Localization of Chitinases from Metarhizium anisopliae, M. flavoviride, and Beauveria bassiana during Fungal Invasion of Host (Manduca sexta) Cuticle.

      Applied and Environmental Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular chitinases have been suggested to be virulence factors in fungal entomopathogenicity. We employed isoelectric focusing and a set of three fluorescent substrates to investigate the numbers and types of chitinolytic enzymes produced by the entomopathogenic fungi Metarhizium anisopliae, Metarhizium flavoviride, and Beauveria bassiana. Each species produced a variety of N-acetyl-(beta)-d-glucosaminidases and endochitinases during growth in media containing insect cuticle. M. flavoviride also produced 1,4-(beta)-chitobiosidases. The endochitinases could be divided according to whether they had basic or acidic isoelectric points. In contrast to those of the other two species, the predominant endochitinases of M. anisopliae were acidic, with isoelectric points of about 4.8. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the acidic chitinases of M. anisopliae into two major bands (43.5 and 45 kDa) with identical N-terminal sequences (AGGYVNAVYFY TNGLYLSNYQPA) similar to an endochitinase from the mycoparasite Trichoderma harzianum. Use of polyclonal antibodies to the 45-kDa isoform and ultrastructural immunocytochemistry enabled us to visualize chitinase production during penetration of the host (Manduca sexta) cuticle. Chitinase was produced at very low levels by infection structures on the cuticle surface and during the initial penetration of the cuticle, but much greater levels of chitinase accumulated in zones of proteolytic degradation, which suggests that the release of the chitinase is dependent on the accessibility of its substrate.

          Related collections

          Author and article information

          Journal
          16535278
          1388803
          10.1128/aem.62.3.907-912.1996

          Comments

          Comment on this article