12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dosimetric verification of a Monte Carlo electron beam model for an add-on eMLC.

      Physics in medicine and biology
      Computer Simulation, Dose-Response Relationship, Radiation, Equipment Design, Equipment Failure Analysis, methods, Models, Theoretical, Monte Carlo Method, Radiometry, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted, Radiotherapy, Conformal, instrumentation, Reproducibility of Results, Sensitivity and Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dosimetric verification of a new Monte Carlo beam model for multi-leaf collimated electrons was performed using experimental data from an add-on electron multi-leaf collimator (eMLC) prototype. The measurements were compared against calculations using an electron phase space sampled from a parameterized electron beam model and the voxel Monte Carlo++ (VMC++) code for in-phantom energy deposition. Verification of the calculations was performed in a water phantom with the developed eMLC attached to a Varian 2100 C/D radiotherapy accelerator with nominal energies 6 MeV, 9 MeV, 12 MeV, 16 MeV and 20 MeV. The eMLC prototype consisting of 2 cm thick and 5 mm wide steel leaves is fixed under the 20 x 20 cm(2) electron applicator with a source-to-leaf distance 97.2 cm. The eMLC prototype has non-motorized leaves with straight leaf edges and a maximum field size of 20 x 20 cm(2) at SSD 100 cm. The beam model is a coupled multi-source model with parameters derived from detailed beam characterization measurements and a kernel model for the indirect leaf-scattered electrons. Typical calculation times with a 2% mean statistical uncertainty was under 5 min. In extensive set of in-water measurements 88% of the voxels were within 2% /2 mm acceptance criterion. Although at SSD 100 cm the dose near the phantom surface is slightly pronounced due to the short collimator-to-surface distance, the new beam model was suitable for dose calculation of the add-on type eMLC.

          Related collections

          Author and article information

          Comments

          Comment on this article