4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute promyelocytic leukemia (APL): a review of the literature

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute Promyelocytic Leukemia (APL) is characterized by a block in differentiation where leukemic cells are halted at the promyelocyte stage. A characteristic balanced chromosomal translocation between chromosomes 15 and 17 t (15;17) (q24; q21) is seen in 95% of cases — the translocation results in the formation of the PML-RARA fusion protein. The introduction of retinoic acid (RA) and arsenic trioxide (ATO) has been responsible for initially remarkable cure rates. However, relapsed APL, particularly in the high-risk subset of patients, remains an important clinical problem. In addition, despite the success of ATRA & ATO, many clinicians still elect to use cytotoxic chemotherapy in the treatment of APL. Patients who become resistant to ATO have an increased risk of mortality. The probability of relapse is significantly higher in the high-risk subset of patients undergoing treatment for APL; overall approximately 10-20% of APL patients relapse regardless of their risk stratification. Furthermore, 20-25% of patients undergoing treatment will develop differentiation syndrome, a common side effect of differentiation agents. Recent evidence using in vitro models has shown that mutations in the B2 domain of the PML protein, mediate arsenic resistance. Alternative agents and approaches considering these clinical outcomes are needed to address ATO resistance as well as the relapse rate in high risk APL.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway.

          In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML-RARalpha SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML-RARalpha catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet

            Since the comprehensive recommendations for the management of acute promyelocytic leukemia (APL) reported in 2009, several studies have provided important insights, particularly regarding the role of arsenic trioxide (ATO) in frontline therapy. Ten years later, a European LeukemiaNet expert panel has reviewed the recent advances in the management of APL in both frontline and relapse settings in order to develop updated evidence- and expert opinion–based recommendations on the management of this disease. Together with providing current indications on genetic diagnosis, modern risk-adapted frontline therapy, and salvage treatment, the review contains specific recommendations for the identification and management of the most important complications such as the bleeding disorder APL differentiation syndrome, QT prolongation, and other all- trans retinoic acid– and ATO-related toxicities, as well as recommendations for molecular assessment of the response to treatment. Finally, the approach to special situations is also discussed, including management of APL in children, elderly patients, and pregnant women. The most important challenges remaining in APL include early death, which still occurs before and during induction therapy, and optimizing treatment in patients with high-risk disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.

              Retinoic acid is a vitamin A derivative with striking effects on development and cell differentiation. Several nuclear retinoic acid receptors (RARs), acting as ligand-inducible transcription factors, have been characterized and indirect evidence suggests that they have distinct roles. One of the most intriguing properties of retinoic acid is its ability to induce in vivo differentiation of acute promyelocytic leukaemia (APL) cells into mature granulocytes, leading to morphological complete remissions. Because the RAR alpha gene maps to chromosome 17q21 (ref. 14), close to the t(15;17) (q21-q11-22) translocation specifically associated with APL, we analysed RAR alpha gene structure and expression in APL cells. We report here that, in one APL-derived cell line, the RAR alpha gene has been translocated to a locus, myl, on chromosome 15, resulting in the synthesis of a myl/RAR alpha fusion messenger RNA. Using two probes located on either side of the cloned breakpoint, we have found genomic rearrangements of one or other locus in six patients out of eight, demonstrating that the RAR alpha and/or myl genes are frequently rearranged in APL and the breakpoints are clustered. These findings strongly implicate retinoic acid receptor alpha in leukaemogenesis.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Impact Journals LLC
                Oncotarget
                Impact Journals LLC
                1949-2553
                17 March 2020
                17 March 2020
                : 11
                : 11
                : 992-1003
                Affiliations
                1Dr. Phillip Frost Department of Dermatology, Miller School of Medicine, University of Miami, Miami, FL, USA
                2Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
                3Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
                4Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
                5Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
                6Division of Hematology Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
                7Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
                Author notes
                Correspondence to: Joaquin J. Jimenez, email : j.jimenez@ 123456med.miami.edu
                Article
                27513
                10.18632/oncotarget.27513
                7082115
                32215187
                8e5b5ed1-15f6-4ad2-bc7a-1de309aaedc3

                Copyright: Jimenez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 December 2019
                : 17 February 2020
                Categories
                Review

                Oncology & Radiotherapy
                promyelocytic leukemia,arsenic trioxide,retinoic acid,resistance
                Oncology & Radiotherapy
                promyelocytic leukemia, arsenic trioxide, retinoic acid, resistance

                Comments

                Comment on this article