4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization

      , , ,
      Crystals
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.

          The selection and assembly of materials are central issues in the development of smaller, more flexible batteries. Cobalt oxide has shown excellent electrochemical cycling properties and is thus under consideration as an electrode for advanced lithium batteries. We used viruses to synthesize and assemble nanowires of cobalt oxide at room temperature. By incorporating gold-binding peptides into the filament coat, we formed hybrid gold-cobalt oxide wires that improved battery capacity. Combining virus-templated synthesis at the peptide level and methods for controlling two-dimensional assembly of viruses on polyelectrolyte multilayers provides a systematic platform for integrating these nanomaterials to form thin, flexible lithium ion batteries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stable prenucleation calcium carbonate clusters.

            Calcium carbonate forms scales, geological deposits, biominerals, and ocean sediments. Huge amounts of carbon dioxide are retained as carbonate ions, and calcium ions represent a major contribution to water hardness. Despite its relevance, little is known about the precipitation mechanism of calcium carbonate, and specified complex crystal structures challenge the classical view on nucleation considering the formation of metastable ion clusters. We demonstrate that dissolved calcium carbonate in fact contains stable prenucleation ion clusters forming even in undersaturated solution. The cluster formation can be characterized by means of equilibrium thermodynamics, applying a multiple-binding model, which allows for structural preformation. Stable clusters are the relevant species in calcium carbonate nucleation. Such mechanisms may also be important for the crystallization of other minerals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment.

              Controlled self-organization of nanoparticles can lead to new materials. The colloidal crystallization of non-spherical nanocrystals is a reaction channel in many crystallization reactions. With additives, self-organization can be stopped at an intermediary step-a mesocrystal-in which the primary units can still be identified. Mesocrystals were observed for various systems as kinetically metastable species or as intermediates in a crystallization reaction leading to single crystals with typical defects and inclusions. The control forces and mechanism of mesocrystal formation are largely unknown, but several mesocrystal properties are known. Mesocrystals are exiting examples of nonclassical crystallization, which does not proceed through ion-by-ion attachment, but by a modular nanobuilding-block route. This path makes crystallization more independent of ion products or molecular solubility, it occurs without pH or osmotic pressure changes, and opens new strategies for crystal morphogenesis.
                Bookmark

                Author and article information

                Journal
                CRYSBC
                Crystals
                Crystals
                MDPI AG
                2073-4352
                January 2018
                January 19 2018
                : 8
                : 1
                : 48
                Article
                10.3390/cryst8010048
                8e611ec9-f3b2-40bd-ab06-fdaf7d693fef
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article