59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Archaeogenomic evidence reveals prehistoric matrilineal dynasty

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For societies with writing systems, hereditary leadership is documented as one of the hallmarks of early political complexity and governance. In contrast, it is unknown whether hereditary succession played a role in the early formation of prehistoric complex societies that lacked writing. Here we use an archaeogenomic approach to identify an elite matriline that persisted between 800 and 1130 CE in Chaco Canyon, the centre of an expansive prehistoric complex society in the Southwestern United States. We show that nine individuals buried in an elite crypt at Pueblo Bonito, the largest structure in the canyon, have identical mitochondrial genomes. Analyses of nuclear genome data from six samples with the highest DNA preservation demonstrate mother–daughter and grandmother–grandson relationships, evidence for a multigenerational matrilineal descent group. Together, these results demonstrate the persistence of an elite matriline in Chaco for ∼330 years.

          Abstract

          In ancient cultures without a writing system, it is difficult to infer the basis of status and rank. Here the authors analyse ancient DNA from nine presumed elite individuals buried successively over a 300-year period at Chaco Canyon, and show evidence of matrilineal relationships.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Patterns of damage in genomic DNA sequences from a Neandertal.

          High-throughput direct sequencing techniques have recently opened the possibility to sequence genomes from Pleistocene organisms. Here we analyze DNA sequences determined from a Neandertal, a mammoth, and a cave bear. We show that purines are overrepresented at positions adjacent to the breaks in the ancient DNA, suggesting that depurination has contributed to its degradation. We furthermore show that substitutions resulting from miscoding cytosine residues are vastly overrepresented in the DNA sequences and drastically clustered in the ends of the molecules, whereas other substitutions are rare. We present a model where the observed substitution patterns are used to estimate the rate of deamination of cytosine residues in single- and double-stranded portions of the DNA, the length of single-stranded ends, and the frequency of nicks. The results suggest that reliable genome sequences can be obtained from Pleistocene organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic insights into the origin of farming in the ancient Near East

            We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000-1,400 BCE, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages prior to their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to drastically reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those from Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genetic history of Ice Age Europe

              Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                21 February 2017
                2017
                : 8
                : 14115
                Affiliations
                [1 ]Department of Anthropology, Pennsylvania State University , University Park, Pennsylvania 16802, USA
                [2 ]Department of Anthropology, University of Virginia , Charlottesville, Virginia 22904, USA
                [3 ]Division of Anthropology, American Museum of Natural History , New York, New York 10024, USA
                [4 ]Department of Genetics, Harvard Medical School , Boston, Massachusetts 02115, USA
                [5 ]Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, USA
                [6 ]Howard Hughes Medical Institute, Harvard Medical School , Boston, Massachusetts 02115, USA
                [7 ]Peabody Museum of Archaeology and Ethnology, Harvard University , Cambridge, Massachusetts 02138, USA
                [8 ]Department of Biology, Pennsylvania State University , University Park, Pennsylvania 16802, USA
                Author notes
                [*]

                Present address: Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA

                Article
                ncomms14115
                10.1038/ncomms14115
                5321759
                28221340
                8e75b4d2-ddd9-481c-b3b1-2a85e3bb9bf4
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 August 2016
                : 01 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article