29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Neutrophil Extracellular Traps : Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have demonstrated a role of neutrophils in both venous and arterial thrombosis. A key prothrombotic feature of neutrophils is their ability to release web-like structures composed of DNA filaments coated with histones and granule proteins referred to as neutrophil extracellular traps (NETs). NETs were discovered over a decade ago as part of our first line of host defense against invading microorganisms. Although NETs have a protective role against pathogens, recent data suggest that an uncontrolled and excessive NET formation within the vasculature may contribute to pathological thrombotic disorders. In vitro studies suggest that NETs promote vessel occlusion by providing a scaffold for platelets, red blood cells, extracellular vesicles, and procoagulant molecules, such as von Willebrand factor and tissue factor. In addition, NET components enhance coagulation by both activating the intrinsic pathway and degrading an inhibitor of the extrinsic pathway (tissue factor pathway inhibitor). NET formation has, therefore, been proposed to contribute to thrombus formation and propagation in arterial, venous, and cancer-associated thrombosis. This review will describe animal and human studies suggesting a role of NETs in the pathogenesis of various thrombotic disorders. Targeting NETs may be a novel approach to reduce thrombosis without affecting hemostasis.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.

          It has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown. We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils. This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs). Plasma from severely septic humans also induced TLR4-dependent platelet-neutrophil interactions, leading to the production of NETs. The NETs retained their integrity under flow conditions and ensnared bacteria within the vasculature. The entire event occurred primarily in the liver sinusoids and pulmonary capillaries, where NETs have the greatest capacity for bacterial trapping. We propose that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Netting neutrophils in autoimmune small-vessel vasculitis.

            Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps

              Neutrophils trap and kill bacteria by forming highly decondensed chromatin structures, termed neutrophil extracellular traps (NETs). We previously reported that histone hypercitrullination catalyzed by peptidylarginine deiminase 4 (PAD4) correlates with chromatin decondensation during NET formation. However, the role of PAD4 in NET-mediated bacterial trapping and killing has not been tested. Here, we use PAD4 knockout mice to show that PAD4 is essential for NET-mediated antibacterial function. Unlike PAD4+/+ neutrophils, PAD4−/− neutrophils cannot form NETs after stimulation with chemokines or incubation with bacteria, and are deficient in bacterial killing by NETs. In a mouse infectious disease model of necrotizing fasciitis, PAD4−/− mice are more susceptible to bacterial infection than PAD4+/+ mice due to a lack of NET formation. Moreover, we found that citrullination decreased the bacterial killing activity of histones and nucleosomes, which suggests that PAD4 mainly plays a role in chromatin decondensation to form NETs instead of increasing histone-mediated bacterial killing. Our results define a role for histone hypercitrullination in innate immunity during bacterial infection.
                Bookmark

                Author and article information

                Journal
                Arteriosclerosis, Thrombosis, and Vascular Biology
                ATVB
                Ovid Technologies (Wolters Kluwer Health)
                1079-5642
                1524-4636
                September 2019
                September 2019
                : 39
                : 9
                : 1724-1738
                Affiliations
                [1 ]From the Division of Internal Medicine, Department of Clinical Sciences, Danderyd Hospital (C.T.), Karolinska Institutet, Stockholm, Sweden
                [2 ]Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., N.M.)
                [3 ]Department of Oncology-Pathology (S.L.), Karolinska Institutet, Stockholm, Sweden
                [4 ]Palliative Care Services and R&D-Unit, Stockholms Sjukhem Foundation, Sweden (S.L.).
                [5 ]Division of Cardiovascular Medicine (H.W.), Karolinska Institutet, Stockholm, Sweden
                Article
                10.1161/ATVBAHA.119.312463
                6703916
                31315434
                8e815d8d-6de0-4e7b-8d46-2c0905181e19
                © 2019
                History

                Comments

                Comment on this article