5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets

      ,
      Amino Acids
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Amino acids and immune function.

          A deficiency of dietary protein or amino acids has long been known to impair immune function and increase the susceptibility of animals and humans to infectious disease. However, only in the past 15 years have the underlying cellular and molecular mechanisms begun to unfold. Protein malnutrition reduces concentrations of most amino acids in plasma. Findings from recent studies indicate an important role for amino acids in immune responses by regulating: (1) the activation of T lymphocytes, B lymphocytes, natural killer cells and macrophages; (2) cellular redox state, gene expression and lymphocyte proliferation; and (3) the production of antibodies, cytokines and other cytotoxic substances. Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality. Arginine, glutamine and cysteine precursors are the best prototypes. Because of a negative impact of imbalance and antagonism among amino acids on nutrient intake and utilisation, care should be exercised in developing effective strategies of enteral or parenteral provision for maximum health benefits. Such measures should be based on knowledge about the biochemistry and physiology of amino acids, their roles in immune responses, nutritional and pathological states of individuals and expected treatment outcomes. New knowledge about the metabolism of amino acids in leucocytes is critical for the development of effective means to prevent and treat immunodeficient diseases. These nutrients hold great promise in improving health and preventing infectious diseases in animals and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Protein content and amino acid composition of commercially available plant-based protein isolates

            The postprandial rise in essential amino acid (EAA) concentrations modulates the increase in muscle protein synthesis rates after protein ingestion. The EAA content and AA composition of the dietary protein source contribute to the differential muscle protein synthetic response to the ingestion of different proteins. Lower EAA contents and specific lack of sufficient leucine, lysine, and/or methionine may be responsible for the lower anabolic capacity of plant-based compared with animal-based proteins. We compared EAA contents and AA composition of a large selection of plant-based protein sources with animal-based proteins and human skeletal muscle protein. AA composition of oat, lupin, wheat, hemp, microalgae, soy, brown rice, pea, corn, potato, milk, whey, caseinate, casein, egg, and human skeletal muscle protein were assessed using UPLC–MS/MS. EAA contents of plant-based protein isolates such as oat (21%), lupin (21%), and wheat (22%) were lower than animal-based proteins (whey 43%, milk 39%, casein 34%, and egg 32%) and muscle protein (38%). AA profiles largely differed among plant-based proteins with leucine contents ranging from 5.1% for hemp to 13.5% for corn protein, compared to 9.0% for milk, 7.0% for egg, and 7.6% for muscle protein. Methionine and lysine were typically lower in plant-based proteins (1.0 ± 0.3 and 3.6 ± 0.6%) compared with animal-based proteins (2.5 ± 0.1 and 7.0 ± 0.6%) and muscle protein (2.0 and 7.8%, respectively). In conclusion, there are large differences in EAA contents and AA composition between various plant-based protein isolates. Combinations of various plant-based protein isolates or blends of animal and plant-based proteins can provide protein characteristics that closely reflect the typical characteristics of animal-based proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Algae as nutritional and functional food sources: revisiting our understanding

              Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches. Electronic supplementary material The online version of this article (doi:10.1007/s10811-016-0974-5) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Amino Acids
                Amino Acids
                Springer Science and Business Media LLC
                0939-4451
                1438-2199
                April 2020
                March 11 2020
                April 2020
                : 52
                : 4
                : 523-542
                Article
                10.1007/s00726-020-02833-4
                32162082
                8e8610d1-c81c-45f6-9396-53f853b2e1f7
                © 2020

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article