5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Feline infectious peritonitis: Role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          ► Truncated 3c is not essential for enteric to FIP biotype conversion of feline coronaviruses (FCoVs). ► Intact 3c required by both FIP and enteric FCoV biotypes for intestinal replication in cats. ► FIP and enteric FCoV biotypes rarely infect intestinal epithelium following intraperitoneal infection. ► FIP and enteric FCoVs undergo constant mutation within and between host cats. ► Shelter cats are infected with many enteric FCoV strains reflective of their differing origins.

          Abstract

          Feline infectious peritonitis virus (FIPV) was presumed to arise from mutations in the 3c of a ubiquitous and largely nonpathogenic feline enteric coronavirus (FECV). However, a recent study found that one-third of FIPV isolates have an intact 3c and suggested that it is not solely involved in FIP but is essential for intestinal replication. In order to confirm these assumptions, 27 fecal and 32 FIP coronavirus isolates were obtained from resident or adopted cats from a large metropolitan shelter during 2008–2009 and their 3a–c, E, and M genes sequenced. Forty percent of coronavirus isolates from FIP tissues had an intact 3c gene, while 60% had mutations that truncated the gene product. The 3c genes of fecal isolates from healthy cats were always intact. Coronavirus from FIP diseased tissues consistently induced FIP when given either oronasally or intraperitoneally (i.p.), regardless of the functional status of their 3c genes, thus confirming them to be FIPVs. In contrast, fecal isolates from healthy cats were infectious following oronasal infection and shed at high levels in feces without causing disease, as expected for FECVs. Only one in three cats shed FECV in the feces following i.p. infection, indicating that FECVs can replicate systemically, but with difficulty. FIPVs having a mutated 3c were not shed in the feces following either oronasal or i.p. inoculation, while FIPVs with intact 3c genes were shed in the feces following oronasal but not i.p. inoculation. Therefore, an intact 3c appears to be essential for intestinal replication. Although FIPVs with an intact 3c were shed in the feces following oronasal inoculation, fecal virus from these cats was not infectious for other cats. Attempts to identify potential FIP mutations in the 3a, 3b, E, and M were negative. However, the 3c gene of FIPVs, even though appearing intact, contained many more non-synonymous amino acid changes in the 3′ one-third of the 3c protein than FECVs. An attempt to trace FIPV isolates back to enteric strains existing in the shelter was only partially successful due to the large region over which shelter cats and kittens originated, housing conditions prior to acquisition, and rapid movement through the shelter. No evidence could be found to support a recent theory that FIPVs and FECVs are genetically distinct.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found

          Persistence and transmission of natural type I feline coronavirus infection.

          To examine the mode of natural transmission and persistence of feline coronavirus (FCoV), FCoV strains shed by domestic cats were investigated over periods of up to 7 years. An RT-PCR that amplified part of the 3' end of the viral spike (S) gene was devised to distinguish FCoV types I and II. All but 1 of 28 strains of FCoV from 43 cats were type I. Nucleotide identities of the amplified 320 bp product from 49 type I FCoVs ranged from 79 to 100 %. The consensus partial S sequence of isolates recovered from persistently infected cats at time intervals spanning years was generally conserved. While most cats were infected with a single strain, a few may have been infected by more than one strain. Cats that were transiently infected and ceased shedding could be re-infected with either the same, or a different, strain. In most cases, whether a cat became persistently or transiently infected was independent of the virus strain. However, one strain was unusual in that it infected the majority of cats in the household simultaneously and was still being shed 18 months later. Factors that influence whether FCoV establishes lifelong infection in some cats and not others are determined mainly by the host response to infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Molecular Genetics of Feline Coronaviruses: Comparative Sequence Analysis of the ORF7a/7b Transcription Unit of Different Biotypes

            Feline coronaviruses (FCoVs) have been subdivided into feline enteric coronaviruses (FECVs) and feline infectious peritonitis viruses (FIPVs) on the basis of pathogenic properties. Serologically, a distinction has been made between type I and II FCoVs, the latter of which more closely resemble canine coronavirus (CCV). To gain more insight into the genetic relationships between different FCoV biotypes, we determined the nucleotide sequences of the ORF7a/7b transcription unit of nine strains. The following observations were made: (i) The sequences are 87-100% identical. In this part of the genome, type I and II FCoVs are more closely related to each other than to CCV. To explain the genetic and antigenic differences between the spike genes of type I and II FCoVs, we postulate that type II FCoVs have arisen by an RNA recombination event between a type I FCoV and CCV. (ii) The avirulent "FECV" strains UCD and 79-1683 are more similar to virulent "FIPV" strains than to each other. Our findings thus support the notion that FECV and FIPV are not different species but merely virulence variants. (iii) In contrast to FECV 79-1683, FECV UCD contains an intact ORF7b, indicating that ORF7b deletions are not a universal distinguishing property of FECVs. (iv) ORF7b deletions readily occur in vitro, correlating with loss of virulence. By reverse transcription polymerase chain reaction analysis, we show that in naturally occurring FCoVs ORF7b is maintained Thus, ORF7b seems to provide a distinct selective advantage during natural infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene.

              Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV), a virulent mutant of apathogenic feline enteric coronavirus (FECV). We analysed the 3c gene--a proposed virulence marker--in 27 FECV- and 28 FIPV-infected cats. Our findings suggest that functional 3c protein expression is crucial for FECV replication in the gut, but dispensable for systemic FIPV replication. Whilst intact in all FECVs, the 3c gene was mutated in the majority (71.4 %) of FIPVs, but not in all, implying that mutation in 3c is not the (single) cause of FIP. Most cats with FIP had no detectable intestinal feline coronaviruses (FCoVs) and had seemingly cleared the primary FECV infection. In those with detectable intestinal FCoV, the virus always had an intact 3c and seemed to have been acquired by FECV superinfection. Apparently, 3c-inactivated viruses replicate not at all--or only poorly--in the gut, explaining the rare incidence of FIP outbreaks.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virus Res
                Virus Res
                Virus Research
                Elsevier B.V.
                0168-1702
                1872-7492
                17 January 2012
                April 2012
                17 January 2012
                : 165
                : 1
                : 17-28
                Affiliations
                [a ]Center for Companion Animal Health, University of California, One Shields Avenue, Davis, CA 95616, USA
                [b ]San Francisco SPCA, 2500 16th Street, San Francisco, CA 94103, USA
                [c ]Idexx Laboratory, 2825 KOVR Drive, West Sacramento, CA 95606, USA
                Author notes
                [* ]Corresponding author. Tel.: +1 530 752 7402; fax: +1 530 752 7701. ncpedersen@ 123456ucdavis.edu
                Article
                S0168-1702(11)00515-6
                10.1016/j.virusres.2011.12.020
                7114484
                22280883
                8e8fc9f7-e690-4372-81c8-9c3844741b70
                Copyright © 2012 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 16 September 2011
                : 27 December 2011
                : 28 December 2011
                Categories
                Article

                Microbiology & Virology
                feline coronavirus,feline enteric coronavirus,feline infectious peritonitis,feline infectious peritonitis virus,3c gene,mutation,pathogenesis

                Comments

                Comment on this article