34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway

      review-article
      1 , , 2
      Molecular Pain
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Although the mechanisms of short- and long-term potentiation of nociceptive-evoked responses are well known in the spinal cord, including central sensitization, there has been a growing body of information on such events in the cerebral cortex. In view of the importance of anterior cingulate cortex (ACC) in chronic pain conditions, this review considers neuronal plasticities in the thalamocingulate pathway that may be the earliest changes associated with such syndromes.

          Results

          A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink current in the layer II/III of the ACC in vivo, while high frequency stimulation potentiated the response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal and intralaminar thalamic nuclei (MITN) suggesting that the MITN projection to ACC mediates the nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different inputs in vitro where the medial thalamic and contralateral corpus callosum afferents were compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of the short-term plasticity.

          Conclusion

          The potentiation of ACC neuronal activity induced by thalamic bursting suggest that short-term synaptic plasticities enable the processing of nociceptive information from the medial thalamus and this temporal response variability is particularly important in pain because temporal maintenance of the response supports cortical integration and memory formation related to noxious events. Moreover, these modifications of cingulate synapses appear to regulate afferent signals that may be important to the transition from acute to chronic pain conditions associated with persistent peripheral noxious stimulation. Enhanced and maintained nociceptive activities in cingulate cortex, therefore, can become adverse and it will be important to learn how to regulate such changes in thalamic firing patterns that transmit nociceptive information to ACC in early stages of chronic pain.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Short-term synaptic plasticity.

          Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca(2+)]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca(2+) influx or postsynaptic levels of [Ca(2+)]i. Synaptic depression dominates enhancement at many synapses. Depression is usually attributed to depletion of some pool of readily releasable vesicles, and various forms of the depletion model are discussed. Depression can also arise from feedback activation of presynaptic receptors and from postsynaptic processes such as receptor desensitization. In addition, glial-neuronal interactions can contribute to short-term synaptic plasticity. Finally, we summarize the recent literature on putative molecular players in synaptic plasticity and the effects of genetic manipulations and other modulatory influences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex.

            1. An oculomotor delayed-response task was used to examine the spatial memory functions of neurons in primate prefrontal cortex. Monkeys were trained to fixate a central spot during a brief presentation (0.5 s) of a peripheral cue and throughout a subsequent delay period (1-6 s), and then, upon the extinction of the fixation target, to make a saccadic eye movement to where the cue had been presented. Cues were usually presented in one of eight different locations separated by 45 degrees. This task thus requires monkeys to direct their gaze to the location of a remembered visual cue, controls the retinal coordinates of the visual cues, controls the monkey's oculomotor behavior during the delay period, and also allows precise measurement of the timing and direction of the relevant behavioral responses. 2. Recordings were obtained from 288 neurons in the prefrontal cortex within and surrounding the principal sulcus (PS) while monkeys performed this task. An additional 31 neurons in the frontal eye fields (FEF) region within and near the anterior bank of the arcuate sulcus were also studied. 3. Of the 288 PS neurons, 170 exhibited task-related activity during at least one phase of this task and, of these, 87 showed significant excitation or inhibition of activity during the delay period relative to activity during the intertrial interval. 4. Delay period activity was classified as directional for 79% of these 87 neurons in that significant responses only occurred following cues located over a certain range of visual field directions and were weak or absent for other cue directions. The remaining 21% were omnidirectional, i.e., showed comparable delay period activity for all visual field locations tested. Directional preferences, or lack thereof, were maintained across different delay intervals (1-6 s). 5. For 50 of the 87 PS neurons, activity during the delay period was significantly elevated above the neuron's spontaneous rate for at least one cue location; for the remaining 37 neurons only inhibitory delay period activity was seen. Nearly all (92%) neurons with excitatory delay period activity were directional and few (8%) were omnidirectional. Most (62%) neurons with purely inhibitory delay period activity were directional, but a substantial minority (38%) was omnidirectional. 6. Fifteen of the neurons with excitatory directional delay period activity also had significant inhibitory delay period activity for other cue directions. These inhibitory responses were usually strongest for, or centered about, cue directions roughly opposite those optimal for excitatory responses.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central sensitization and LTP: do pain and memory share similar mechanisms?

              Synaptic plasticity is fundamental to many neurobiological functions, including memory and pain. Central sensitization refers to the increased synaptic efficacy established in somatosensory neurons in the dorsal horn of the spinal cord following intense peripheral noxious stimuli, tissue injury or nerve damage. This heightened synaptic transmission leads to a reduction in pain threshold, an amplification of pain responses and a spread of pain sensitivity to non-injured areas. In the cortex, LTP - a long-lasting highly localized increase in synaptic strength - is a synaptic substrate for memory and learning. Analysis of the molecular mechanisms underlying the generation and maintenance of central sensitization and LTP indicates that, although there are differences between the synaptic plasticity contributing to memory and pain, there are also striking similarities.
                Bookmark

                Author and article information

                Journal
                Mol Pain
                Molecular Pain
                BioMed Central
                1744-8069
                2009
                4 September 2009
                : 5
                : 51
                Affiliations
                [1 ]Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, Republic of China
                [2 ]Cingulum NeuroSciences Institute and SUNY Upstate Medical University, Syracuse, NY 13210, USA
                Article
                1744-8069-5-51
                10.1186/1744-8069-5-51
                2745374
                19732417
                8e9c56a7-aff5-4890-a5cb-d9b534e8aec9
                Copyright © 2009 Shyu and Vogt; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 May 2009
                : 4 September 2009
                Categories
                Review

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article