70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All pancreatic endocrine cell types arise from a common endocrine precursor cell population, yet the molecular mechanisms that establish and maintain the unique gene expression programs of each endocrine cell lineage have remained largely elusive. Such knowledge would improve our ability to correctly program or reprogram cells to adopt specific endocrine fates. Here, we show that the transcription factor Nkx6.1 is both necessary and sufficient to specify insulin-producing beta cells. Heritable expression of Nkx6.1 in endocrine precursors of mice is sufficient to respecify non-beta endocrine precursors towards the beta cell lineage, while endocrine precursor- or beta cell-specific inactivation of Nkx6.1 converts beta cells to alternative endocrine lineages. Remaining insulin + cells in conditional Nkx6.1 mutants fail to express the beta cell transcription factors Pdx1 and MafA and ectopically express genes found in non-beta endocrine cells. By showing that Nkx6.1 binds to and represses the alpha cell determinant Arx, we identify Arx as a direct target of Nkx6.1. Moreover, we demonstrate that Nkx6.1 and the Arx activator Isl1 regulate Arx transcription antagonistically, thus establishing competition between Isl1 and Nkx6.1 as a critical mechanism for determining alpha versus beta cell identity. Our findings establish Nkx6.1 as a beta cell programming factor and demonstrate that repression of alternative lineage programs is a fundamental principle by which beta cells are specified and maintained. Given the lack of Nkx6.1 expression and aberrant activation of non-beta endocrine hormones in human embryonic stem cell (hESC)–derived insulin + cells, our study has significant implications for developing cell replacement therapies.

          Author Summary

          Diabetes is a disease caused by the loss or dysfunction of insulin-producing beta cells in the pancreas. Recent studies suggest that modification of the beta cells' differentiation state is among the earliest events marking the progressive failure of beta cells in diabetes. Currently, very little is known about the factors that instruct cells to adopt beta cell characteristics and maintain the differentiated state of beta cells. We have discovered that a single transcription factor can instruct precursor cells of other endocrine cell types to change their identity and differentiate into beta cells. Conversely, inactivation of the transcription factor in endocrine precursors prevents their differentiation into beta cells and results in excess production of other endocrine cell types. When the factor is specifically inactivated in beta cells, beta cells lose their identity and adopt characteristics of other endocrine cell types, similar to what is seen in animal models of diabetes. Thus, we have identified a single factor that is both sufficient to program beta cells and necessary for maintaining their differentiated state. This factor could be an important target for diabetes therapy and could help reprogram other cell types into beta cells.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure.

          Diabetes is associated with β cell failure. But it remains unclear whether the latter results from reduced β cell number or function. FoxO1 integrates β cell proliferation with adaptive β cell function. We interrogated the contribution of these two processes to β cell dysfunction, using mice lacking FoxO1 in β cells. FoxO1 ablation caused hyperglycemia with reduced β cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β cell mass was due to β cell dedifferentiation, not death. Dedifferentiated β cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β cell failure and suggest that treatment of β cell dysfunction should restore differentiation, rather than promoting β cell replication. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo reprogramming of adult pancreatic exocrine cells to beta-cells.

            One goal of regenerative medicine is to instructively convert adult cells into other cell types for tissue repair and regeneration. Although isolated examples of adult cell reprogramming are known, there is no general understanding of how to turn one cell type into another in a controlled manner. Here, using a strategy of re-expressing key developmental regulators in vivo, we identify a specific combination of three transcription factors (Ngn3 (also known as Neurog3) Pdx1 and Mafa) that reprograms differentiated pancreatic exocrine cells in adult mice into cells that closely resemble beta-cells. The induced beta-cells are indistinguishable from endogenous islet beta-cells in size, shape and ultrastructure. They express genes essential for beta-cell function and can ameliorate hyperglycaemia by remodelling local vasculature and secreting insulin. This study provides an example of cellular reprogramming using defined factors in an adult organ and suggests a general paradigm for directing cell reprogramming without reversion to a pluripotent stem cell state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo.

              Development of a cell therapy for diabetes would be greatly aided by a renewable supply of human beta-cells. Here we show that pancreatic endoderm derived from human embryonic stem (hES) cells efficiently generates glucose-responsive endocrine cells after implantation into mice. Upon glucose stimulation of the implanted mice, human insulin and C-peptide are detected in sera at levels similar to those of mice transplanted with approximately 3,000 human islets. Moreover, the insulin-expressing cells generated after engraftment exhibit many properties of functional beta-cells, including expression of critical beta-cell transcription factors, appropriate processing of proinsulin and the presence of mature endocrine secretory granules. Finally, in a test of therapeutic potential, we demonstrate that implantation of hES cell-derived pancreatic endoderm protects against streptozotocin-induced hyperglycemia. Together, these data provide definitive evidence that hES cells are competent to generate glucose-responsive, insulin-secreting cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2013
                January 2013
                31 January 2013
                : 9
                : 1
                : e1003274
                Affiliations
                [1 ]Department of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
                [2 ]Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
                [3 ]Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
                [4 ]Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
                [5 ]Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                University of Copenhagen, Denmark
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AES BLT JL CLM MS. Performed the experiments: AES BLT JRB JL FT WY YJ. Analyzed the data: AES BLT JRB JL FT YJ KHK PLH CLM MS. Contributed reagents/materials/analysis tools: WY MAM. Wrote the paper: AES BLT MS.

                Article
                PGENETICS-D-12-02385
                10.1371/journal.pgen.1003274
                3561089
                23382704
                8ea3df34-8b2d-4367-b19e-f6ff047d0dcb
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 September 2012
                : 11 December 2012
                Page count
                Pages: 15
                Funding
                This work was supported by National Institutes of Health (NIH) grants U19-DK072495, U01-DK089567, and R01-DK068471 to MS; NIH DK078606 and JDRF 2-2007-703 to CLM; U01-DK089529 and R01-DK055342 to KHK; U01-DK089566 to PLH; and U01-DK072473 to MAM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Cell Differentiation
                Cell Fate Determination
                Genetics
                Molecular Genetics
                Gene Regulation
                Gene Function

                Genetics
                Genetics

                Comments

                Comment on this article