7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity is a frequent metabolic disorder but an effective therapy is still scarce. Anorexigenic neuropeptides produced and acting in the brain have the potential to decrease food intake and ameliorate obesity but are ineffective after peripheral application. We have designed lipidized analogs of prolactin-releasing peptide (PrRP), which is involved in energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Delivery of peptide and protein drugs over the blood-brain barrier.

          Peptide and protein (P/P) drugs have been identified as showing great promises for the treatment of various neurodegenerative diseases. A major challenge in this regard, however, is the delivery of P/P drugs over the blood-brain barrier (BBB). Intense research over the last 25 years has enabled a better understanding of the cellular and molecular transport mechanisms at the BBB, and several strategies for enhanced P/P drug delivery over the BBB have been developed and tested in preclinical and clinical-experimental research. Among them, technology-based approaches (comprising functionalized nanocarriers and liposomes) and pharmacological strategies (such as the use of carrier systems and chimeric peptide technology) appear to be the most promising ones. This review combines a comprehensive overview on the current understanding of the transport mechanisms at the BBB with promising selected strategies published so far that can be applied to facilitate enhanced P/P drug delivery over the BBB.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A prolactin-releasing peptide in the brain.

            Hypothalamic peptide hormones regulate the secretion of most of the anterior pituitary hormones, that is, growth hormone, follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone and adrenocorticotropin. These peptides do not regulate the secretion of prolactin, at least in a specific manner, however. The peptides act through specific receptors, which are referred to as seven-transmembrane-domain receptors or G-protein-coupled receptors. Although prolactin is important in pregnancy and lactation in mammals, and is involved in the development of the mammary glands and the promotion of milk synthesis, a specific prolactin-releasing hormone has remained unknown. Here we identify a potent candidate for such a hormone. We first proposed that there may still be unknown peptide hormone factors that control pituitary function through seven-transmembrane-domain receptors. We isolated the complementary DNA encoding an 'orphan' receptor (that is, one for which the ligand is unknown). This receptor, hGR3, is specifically expressed in the human pituitary. We then searched for the hGR3 ligand in the hypothalamus and identified a new peptide, which shares no sequence similarity with known peptides and proteins, as an endogenous ligand. We show that this ligand is a potent prolactin-releasing factor for rat anterior pituitary cells; we have therefore named this peptide prolactin-releasing peptide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity.

              The present study examined the glucose-lowering and insulinotropic properties of acylated GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic polypeptide) peptides in Type 2 diabetes and obesity. GLP-1, GIP, Liraglutide, N-AcGIP(Lys(37)Myr) (N-acetylGIP with myristic acid conjugated at Lys(37)), a simple combination of both peptides and a Lira-AcGIP preparation [overnight preparation of Liraglutide and N-AcGIP(Lys(37)Myr)] were incubated with DPP-IV (dipeptidyl peptidase-IV) to assess peptide stability, and BRIN-BD11 cells were used to evaluate cAMP production and insulin secretion. Acute glucose-lowering and insulinotropic actions were evaluated in Swiss TO mice. Subchronic studies on glucose homoeostasis, insulin secretion, food intake and bodyweight were evaluated in ob/ob mice. Liraglutide, N-AcGIP(Lys(37)Myr), a simple combination of both peptides and the Lira-AcGIP preparation demonstrated improved DPP-IV resistance (P<0.001), while stimulating cAMP production and insulin secretion (1.4-2-fold; P<0.001). The Lira-AcGIP preparation was more potent at lowering plasma glucose (20-51% reduction; P<0.05-P<0.001) and stimulating insulin secretion (1.5-1.8-fold; P<0.05-P<0.001) compared with Liraglutide and N-AcGIP(Lys(37)Myr) or a simple peptide combination. Daily administration of the Lira-AcGIP preparation to ob/ob mice lowered bodyweight (7-9%; P<0.05), food intake (23%; P<0.05) and plasma glucose (46% reduction; P<0.001), while increasing plasma insulin (1.5-1.6-fold; P<0.001). The Lira-AcGIP preparation enhanced glucose tolerance, insulin response to glucose and insulin content (P<0.05-P<0.001). These findings demonstrate that a combined preparation of the acylated GLP-1 and GIP peptides Liraglutide and N-AcGIP(Lys(37)Myr) markedly improved glucose-lowering and insulinotropic properties in diabetic obesity compared with either incretin mimetic given individually.
                Bookmark

                Author and article information

                Journal
                International Journal of Obesity
                Int J Obes
                Springer Nature
                0307-0565
                1476-5497
                June 2015
                March 16 2015
                : 39
                : 6
                : 986-993
                Article
                10.1038/ijo.2015.28
                25771926
                8eb5db39-2dee-4ef1-95eb-aa480849a81a
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article