+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Chloride Channels and Endocytosis: New Insights from Dent’s Disease and ClC-5 Knockout Mice

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Dent’s disease is a hereditary renal tubular disorder characterized by low-molecular weight (LMW) proteinuria, hypercalciuria and nephrolithiasis. The disease is due to mutations of ClC-5, a member of the family of voltage-gated CLC chloride channels. ClC-5 is expressed in part in cells lining the proximal tubule (PT) of the kidney, where it colocalizes with albumin-containing endocytic vesicles belonging to the receptor-mediated endocytic pathway that ensures efficient reabsorption of ultrafiltrated LMW proteins. Since progression along the endocytic apparatus requires endosomal acidification, it has been suggested that dysfunction of ClC-5 in endosomes may lead to inefficient reabsorption of LMW proteins and dysfunction of PT cells. Analysis of a ClC-5 knockout (KO) mouse model, displaying all the characteristic renal tubular defects of Dent’s disease, showed evidence of a severe LMW proteinuria. Cytochemical studies with the endocytic tracer, peroxidase, showed poor transfer into early endocytic vesicles, suggesting that impairment of receptor-mediated endocytosis in PT cells is the basis for the defective uptake of LMW proteins in patients with Dent’s disease. Endocytosis and processing of LMW proteins involve the multiligand tandem receptors, megalin and cubilin, that are abundantly expressed at the brush border of PT cells. Characterization of the endocytic defect in ClC-5 KO mice revealed that ligands of both megalin and cubilin were affected. The total kidney content of megalin and especially cubilin at the protein level was decreased but, more importantly, using analytical subcellular fractionation and quantitative immunogold labelling we demonstrated a selective disappearance of megalin and cubilin at the brush border of PT cells. These observations allowed us to conclude that defective protein endocytosis linked to ClC-5 inactivation is due at least in part to a major and selective loss of megalin and cubilin at the brush border, reflecting a trafficking defect in renal PT cells. These results improve our understanding of Dent’s disease, taken as a paradigm for renal Fanconi syndrome and nephrolithiasis, and demonstrate multiple roles for ClC-5 in the kidney. These studies also provided insights into important functions such as apical endocytosis, handling of proteins by renal tubular cells, calcium metabolism, and urinary acidification.

          Related collections

          Most cited references 8

          • Record: found
          • Abstract: not found
          • Article: not found

          X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations.

            • Record: found
            • Abstract: found
            • Article: not found

            Modeling study of human renal chloride channel (hCLC-5) mutations suggests a structural-functional relationship.

            Dent's disease, a renal tubular disorder characterized by low-molecular-weight proteinuria, hypercalciuria, and nephrolithiasis, is due to inactivating mutations in the X-linked renal-specific chloride channel, hCLC-5. The x-ray crystal structures of two bacterial chloride channels (CLCs) have recently been established, thereby allowing us to construct a model for hCLC-5 and further examine the role of its mutations. The data regarding 49 hCLC-5 mutations were reviewed. Thirty-four mutations that predicted absent or truncated channels were excluded. The remaining 15 mutations (one in-frame insertion and 14 missense mutations), 12 of which have been studied electrophysiologically, were assessed. The hCLC-5 sequence was aligned with the Salmonella typhimurium and Escherichia coli sequences and used to map the hCLC-5 mutations onto a three-dimensional model. hCLC-5 is a homodimeric protein, with each subunit consisting of 18 helices. None of the missense mutations involved the chloride (Cl-) selectivity filter, but 12 of the 15 mutations were found to be clustered at the interface of the two subunits. Six of these mutations occurred in two of the helices that either form part of the interface or lie in close proximity to the interface, and three other mutations that did not lead to complete loss of Cl- conductance were at the edge of the interface. These results demonstrate a crucial role for the interaction between the two subunits at the interface of the homodimeric hCLC-5.
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for genetic heterogeneity in Dent's disease.

              Dent's disease (X-linked nephrolithiasis) is a proximal tubulopathy that has been consistently associated with inactivating mutations in the CLCN5 gene encoding the ClC-5 chloride channel expressed in tubular epithelial cells. We performed mutation analysis of the coding region of CLCN5 by DNA sequencing in 32 unrelated males, all of whom met the following three clinical criteria for the diagnosis of Dent's disease: (1) low-molecular-weight (LMW) proteinuria; (2) hypercalciuria; and (3) at least one of the following: nephrocalcinosis, kidney stones, renal insufficiency, hypophosphatemia, or hematuria. Sixteen mutations (ten missense, four nonsense, two frameshift) were found in 19 patients. Mutations were confirmed by restriction analysis or allele-specific polymerase chain reaction (PCR), segregated with disease in the families, and were not polymorphisms. In the other 13 patients with Dent's disease, the coding sequence of CLCN5 was normal. In these 13 patients, we also sequenced two regions of the CLCN5 promoter (626 and 586 bp, respectively, 2.1 and 1 kb upstream of exon 2) containing regulatory sites [activating protein-1 (AP-1)-like, AP-4, and cyclic adenosine monophosphate (cAMP)-receptor element binding protein (CREB)] and primary and secondary transcription start sites. We found no mutations in these promoter sequences in any of the 13 patients. In one three-generation family, the absence of mutation was confirmed by sequencing in two additional affected family members, and in this family haplotype analysis excluded linkage to the region of the CLCN5 gene. There were no differences between the 19 patients with CLCN5 mutations and the 13 without mutations with regard to any clinical features of Dent's disease. These findings suggest that mutation in other gene(s) may be responsible for the phenotype of Dent's disease in some patients.

                Author and article information

                Nephron Physiol
                Nephron Physiology
                S. Karger AG
                March 2005
                24 February 2005
                : 99
                : 3
                : p69-p73
                Division of Nephrology; CELL Unit, Christian de Duve Institute of Cellular Pathology, Université catholique de Louvain Medical School, Brussels, Belgium
                83210 Nephron Physiol 2005;99:p69–p73
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                References: 26, Pages: 1
                Self URI (application/pdf):


                Comment on this article