4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Audibility and Suprathreshold Deficits on Speech Recognition for Listeners With Unilateral Hearing Loss

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives:

          We examined the influence of impaired processing (audibility and suprathreshold processes) on speech recognition in cases of sensorineural hearing loss. The influence of differences in central, or top-down, processing was reduced by comparing the performance of both ears in participants with a unilateral hearing loss (UHL). We examined the influence of reduced audibility and suprathreshold deficits on speech recognition in quiet and in noise.

          Design:

          We measured speech recognition in quiet and stationary speech-shaped noise with consonant–vowel–consonant words and digital triplets in groups of adults with UHL (n = 19), normal hearing (n = 15), and bilateral hearing loss (n = 9). By comparing the scores of the unaffected ear (UHL+) and the affected ear (UHL−) in the UHL group, we were able to isolate the influence of peripheral hearing loss from individual top-down factors such as cognition, linguistic skills, age, and sex.

          Results:

          Audibility is a very strong predictor for speech recognition in quiet. Audibility has a less pronounced influence on speech recognition in noise. We found that, for the current sample of listeners, more speech information is required for UHL− than for UHL+ to achieve the same performance. For digit triplets at 80 dBA, the speech recognition threshold in noise (SRT) for UHL− is on average 5.2 dB signal to noise ratio (SNR) poorer than UHL+. Analysis using the speech intelligibility index (SII) indicates that on average 2.1 dB SNR of this decrease can be attributed to suprathreshold deficits and 3.1 dB SNR to audibility. Furthermore, scores for speech recognition in quiet and in noise for UHL+ are comparable to those of normal-hearing listeners.

          Conclusions:

          Our data showed that suprathreshold deficits in addition to audibility play a considerable role in speech recognition in noise even at intensities well above hearing threshold.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of fluctuating noise and interfering speech on the speech-reception threshold for impaired and normal hearing.

          The speech-reception threshold (SRT) for sentences presented in a fluctuating interfering background sound of 80 dBA SPL is measured for 20 normal-hearing listeners and 20 listeners with sensorineural hearing impairment. The interfering sounds range from steady-state noise, via modulated noise, to a single competing voice. Two voices are used, one male and one female, and the spectrum of the masker is shaped according to these voices. For both voices, the SRT is measured as well in noise spectrally shaped according to the target voice as shaped according to the other voice. The results show that, for normal-hearing listeners, the SRT for sentences in modulated noise is 4-6 dB lower than for steady-state noise; for sentences masked by a competing voice, this difference is 6-8 dB. For listeners with moderate sensorineural hearing loss, elevated thresholds are obtained without an appreciable effect of masker fluctuations. The implications of these results for estimating a hearing handicap in everyday conditions are discussed. By using the articulation index (AI), it is shown that hearing-impaired individuals perform poorer than suggested by the loss of audibility for some parts of the speech signal. Finally, three mechanisms are discussed that contribute to the absence of unmasking by masker fluctuations in hearing-impaired listeners. The low sensation level at which the impaired listeners receive the masker seems a major determinant. The second and third factors are: reduced temporal resolution and a reduction in comodulation masking release, respectively.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Preferred Method For Clinical Determination Of Pure-Tone Thresholds

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanics of the mammalian cochlea.

              In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the "base" of the cochlea (near the stapes) and low-frequency waves approaching the "apex" of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the "cochlear amplifier." This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers.
                Bookmark

                Author and article information

                Journal
                Ear Hear
                Ear Hear
                AUD
                Ear and Hearing
                Williams And Wilkins
                0196-0202
                1538-4667
                Jul-Aug 2019
                26 June 2019
                : 40
                : 4
                : 1025-1034
                Affiliations
                [1 ]Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolar yngology/Head and Neck Surgery, Section Ear and Hearing, Amsterdam Public Health, De Boelelaan 1117, Amsterdam, The Netherlands
                [2 ]Hearing Research Center, Department of Biomedical Engineering, Boston University, Massachusetts, USA.
                Author notes
                Address for correspondence: S. Theo Goverts, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolarynghology, PO Box 7057, 1007 MB Amsterdam, The Netherlands. E-mail: st.goverts@ 123456vumc.nl
                Article
                00024
                10.1097/AUD.0000000000000685
                7664706
                31242137
                8ebc8a8e-8057-4d92-8870-63cca6767c29
                Copyright © 2018 The Author(s). Ear & Hearing is published on behalf of the American Auditory Society, by Wolters Kluwer Health, Inc.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                History
                : 10 January 2018
                : 21 October 2018
                Categories
                Research Article
                Custom metadata
                TRUE

                audibility,audiology,bottom-up processing,cvc words,digits in noise,hearing impairment,hearing loss,speech in noise,speech intelligibility index,speech recognition,supra-threshold deficits,top-down processing,unilateral hearing loss

                Comments

                Comment on this article