35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Emerging investigators series: prospects and challenges for high-pressure reverse osmosis in minimizing concentrated waste streams

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          If challenges such as mechanical stability, scaling, biofouling and concentration polarization at high pressures are addressed, high-pressure RO could be used to efficiently remove water from high-salinity waste brines as part of a zero-liquid-discharge disposal process.

          Abstract

          Reverse osmosis (RO) is the most common process for extracting pure water from saline water. RO is more popular than thermal processes such as multi-effect distillation and multi-stage flash due to its lower energy consumption and cost. RO is currently limited to treating streams with total dissolved solids (TDS) values of less than 50 000 ppm. Zero liquid discharge (ZLD) processes involving pretreatment, RO, and thermal steps can concentrate and dispose of high-salinity waste brines with greater thermodynamic efficiency than purely thermal processes; however, ZLD processes are not yet widely practiced. Waste streams requiring ZLD typically have TDS values as high as 300 000 ppm and include seawater RO (SWRO) brines, flowback and produced water from unconventional shale gas development, formation water from CO 2sequestration, and flue-gas desulfurization (FGD) wastewater. The TDS levels of these streams can exceed those of seawater by nearly an order of magnitude, and even concentrating a stream with TDS levels similar to those of seawater requires a high-pressure RO process to achieve high water recovery. In this review, we consider a high-pressure RO (HPRO) process with applied pressures of 2400–5000 psi (compared to 800–1000 psi for SWRO) to reduce the volume of high-salinity brine wastes. We discuss the challenges amplified by the elevated pressure requirements and feed salinities, such as ion precipitation and scaling, biofouling, and RO module mechanical stability. We also propose solutions to address these limitations of HPRO.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The future of seawater desalination: energy, technology, and the environment.

          In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Landfill leachate treatment: Review and opportunity.

            In most countries, sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). In spite of many advantages, generation of heavily polluted leachates, presenting significant variations in both volumetric flow and chemical composition, constitutes a major drawback. Year after year, the recognition of landfill leachate impact on environment has forced authorities to fix more and more stringent requirements for pollution control. This paper is a review of landfill leachate treatments. After the state of art, a discussion put in light an opportunity and some results of the treatment process performances are given. Advantages and drawbacks of the various treatments are discussed under the items: (a) leachate transfer, (b) biodegradation, (c) chemical and physical methods and (d) membrane processes. Several tables permit to review and summarize each treatment efficiency depending on operating conditions. Finally, considering the hardening of the standards of rejection, conventional landfill leachate treatment plants appear under-dimensioned or do not allow to reach the specifications required by the legislator. So that, new technologies or conventional ones improvements have been developed and tried to be financially attractive. Today, the use of membrane technologies, more especially reverse osmosis (RO), either as a main step in a landfill leachate treatment chain or as single post-treatment step has shown to be an indispensable means of achieving purification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Review of technologies for oil and gas produced water treatment.

              Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.
                Bookmark

                Author and article information

                Contributors
                Journal
                ESWRAR
                Environmental Science: Water Research & Technology
                Environ. Sci.: Water Res. Technol.
                Royal Society of Chemistry (RSC)
                2053-1400
                2053-1419
                2018
                2018
                : 4
                : 7
                : 894-908
                Affiliations
                [1 ]Department of Chemical Engineering
                [2 ]The Pennsylvania State University
                [3 ]USA
                [4 ]Department of Civil and Environmental Engineering
                [5 ]GE Global Research Center
                [6 ]Niskayuna
                [7 ]University of California at Berkeley
                [8 ]Berkeley
                [9 ]National Engineering Laboratory for Industrial Wastewater Treatment
                Article
                10.1039/C8EW00137E
                8ebdaedd-acee-4659-91ac-3f810615562a
                © 2018

                Free to read

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article