72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Telomeres and human disease: ageing, cancer and beyond

      Nature Reviews Genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telomere length and telomerase activity are important factors in the pathobiology of human disease. Age-related diseases and premature ageing syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. Altered functioning of both telomerase and telomere-interacting proteins is present in some human premature ageing syndromes and in cancer, and recent findings indicate that alterations that affect telomeres at the level of chromatin structure might also have a role in human disease. These findings have inspired a number of potential therapeutic strategies that are based on telomerase and telomeres.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Telomere shortening and tumor formation by mouse cells lacking telomerase RNA.

          To examine the role of telomerase in normal and neoplastic growth, the telomerase RNA component (mTR) was deleted from the mouse germline. mTR-/- mice lacked detectable telomerase activity yet were viable for the six generations analyzed. Telomerase-deficient cells could be immortalized in culture, transformed by viral oncogenes, and generated tumors in nude mice following transformation. Telomeres were shown to shorten at a rate of 4.8+/-2.4 kb per mTR-/- generation. Cells from the fourth mTR-/- generation onward possessed chromosome ends lacking detectable telomere repeats, aneuploidy, and chromosomal abnormalities, including end-to-end fusions. These results indicate that telomerase is essential for telomere length maintenance but is not required for establishment of cell lines, oncogenic transformation, or tumor formation in mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA damage foci at dysfunctional telomeres.

            We report cytologic and genetic data indicating that telomere dysfunction induces a DNA damage response in mammalian cells. Dysfunctional, uncapped telomeres, created through inhibition of TRF2, became associated with DNA damage response factors, such as 53BP1, gamma-H2AX, Rad17, ATM, and Mre11. We refer to the domain of telomere-associated DNA damage factors as a Telomere Dysfunction-Induced Focus (TIF). The accumulation of 53BP1 on uncapped telomeres was reduced in the presence of the PI3 kinase inhibitors caffeine and wortmannin, which affect ATM, ATR, and DNA-PK. By contrast, Mre11 TIFs were resistant to caffeine, consistent with previous findings on the Mre11 response to ionizing radiation. A-T cells had a diminished 53BP1 TIF response, indicating that the ATM kinase is a major transducer of this pathway. However, in the absence of ATM, TRF2 inhibition still induced TIFs and senescence, pointing to a second ATM-independent pathway. We conclude that the cellular response to telomere dysfunction is governed by proteins that also control the DNA damage response. TIFs represent a new tool for evaluating telomere status in normal and malignant cells suspected of harboring dysfunctional telomeres. Furthermore, induction of TIFs through TRF2 inhibition provides an opportunity to study the DNA damage response within the context of well-defined, physically marked lesions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Telomeres shorten during ageing of human fibroblasts.

              The terminus of a DNA helix has been called its Achilles' heel. Thus to prevent possible incomplete replication and instability of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation, which may involve de novo synthesis of additional repeats by novel DNA polymerase called telomerase. Such a polymerase has been recently detected in HeLa cells. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Science and Business Media LLC
                1471-0056
                1471-0064
                August 2005
                August 2005
                : 6
                : 8
                : 611-622
                Article
                10.1038/nrg1656
                16136653
                8ec19f37-6d4b-4e01-a632-91a1da58c8e4
                © 2005

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article