2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic evolution of major element chemistry in protoplanetary disks and its implications for chondrite formation

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chondrites are the likely building blocks of Earth, and identifying the group of chondrite that best represents Earth is a key to resolving the state of the early Earth. The origin of chondrites, however, remains controversial partly because of their puzzling major element compositions, some exhibiting depletions in Al, Ca, and Mg. Based on a new thermochemical evolution model of protoplanetary disks, we show that planetesimals with depletion patterns similar to ordinary and enstatite chondrites can originate at 1--2~AU just outside where enstatite evaporates. Around the "evaporation front" of enstatite, the large inward flow of refractory minerals, including forsterite, takes place with a high pebble concentration, and the loss of those minerals result in depletion in Al, Ca, and Mg. When evaporated solid grains re-condense onto pebbles, the concentration of pebbles is further enhanced, potentially triggering the streaming instability. Planetesimals with the composition of ordinary and enstatite chondrites can thus be naturally created in the terrestrial region. The preferential loss of forsterite also creates an enhancement of Mg/Si and heavy Si isotopes just inside the potential source region for ordinary and enstatite chondrites. Earth, which shows both features, may originate just inside where ordinary and enstatite chondrites were born.

          Related collections

          Author and article information

          Journal
          28 April 2020
          Article
          2004.13911
          8ed20328-2fd4-46fd-98bc-7df2bbbefb7a

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          16 pages, 6 figures, 1 table
          astro-ph.EP physics.geo-ph

          Planetary astrophysics,Geophysics
          Planetary astrophysics, Geophysics

          Comments

          Comment on this article