23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-atom imaging of fermions in a quantum-gas microscope

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Many-Body Physics with Ultracold Gases

          This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator

            The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in-situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near zero entropy and clearly resolve the high entropy rings separating them although their width is of the order of only a single lattice site. Furthermore, we show how a Mott insulator melts for increasing temperatures due to a proliferation of local defects. Our experiments open a new avenue for the manipulation and analysis of strongly interacting quantum gases on a lattice, as well as for quantum information processing with ultracold atoms. Using the high spatial resolution, it is now possible to directly address individual lattice sites. One could, e.g., introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes for atoms on a lattice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice

              Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications from high temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers due to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we employ a degenerate Bose gas confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary an applied field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase the interaction between the spins is overwhelmed by the applied field which aligns the spins. In the antiferromagnetic phase the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in-situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, improving our understanding of real magnetic materials.
                Bookmark

                Author and article information

                Journal
                2015-03-06
                2015-08-20
                Article
                10.1038/nphys3403
                1503.02005
                8ee9f4a9-3a4b-4913-b514-85c08eac8234

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Nature Physics 11, 738 (2015)
                7 pages, 5 figures; Nature Physics, published online 13 July 2015
                cond-mat.quant-gas physics.atom-ph quant-ph

                Quantum physics & Field theory,Quantum gases & Cold atoms,Atomic & Molecular physics

                Comments

                Comment on this article