24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transition Prediction for Scramjet Intakes Using the \gamma-Re_\theta_t Model Coupled to Two Turbulence Models

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to the thick boundary layers in hypersonic flows, the state of the boundary layer significantly influences the whole flow field as well as surface heat loads. Hence, for engineering applications the efficient numerical prediction of laminar-to-turbulent transition is a challenging and important task. Within the framework of the Reynolds averaged Navier-Stokes equations, Langtry/Menter [1] proposed the -Re?t transition model using two transport equations for the intermittency and Re?t combined with the Shear Stress Transport turbulence model (SST) [2]. The transition model contains two empirical correlations for onset and length of transition. Langtry/Menter [1] designed and validated the correlations for the subsonic and transonic flow regime. For our applications in the hypersonic flow regime, the development of a new set of correlations proved necessary, even when using the same SST turbulence model [3]. Within this paper, we propose a next step and couple the transition model with the SSG/LRR-! Reynolds stress turbulence model [4] which we found to be well suited for scramjet intake simulations. First, we illustrate the necessary modifications of the Reynolds stress model and the hypersonic in-house correlations using a hypersonic flat plate test case. Next, the transition model is successfully validated for its use coupled to both turbulence models using a hypersonic double ramp test case. Regardless of the turbulence model, the transition model is able to correctly predict the transition process compared to experimental data. In addition, we apply the transition model combined with both turbulence models to three different fully 3D scramjet intake configurations which are experimentally investigated in wind tunnel facilities. The agreement with the available experimental data is also shown.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-equation eddy-viscosity turbulence models for engineering applications

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes

              Bookmark

              Author and article information

              Journal
              1410.3946

              Thermal physics & Statistical mechanics
              Thermal physics & Statistical mechanics

              Comments

              Comment on this article