+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Microorganisms and Calcium Oxalate Stone Disease

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Microorganisms may have a role in the pathogenesis and prevention of kidney stones. The subjects of this review include nanobacteria, Oxalobacter formigenes, and lactic acid bacteria. Not reviewed here is the well-described role of infections of the urinary tract with Proteus species and other urease-producing organisms associated with struvite stone formation. Nanobacteria have been proposed to be very small (0.08–0.5 nm), ubiquitous organisms that could play a role in stone formation. The theory is that nanobacteria can nucleate carbonate apatite on their surfaces and thereby provide the nidus for stone formation. However, their existence remains uncertain and many investigators are openly skeptical. Recent investigations suggest that they are artifacts, and not actually living organisms, but their proponents continue to study them. O. formigenes is an obligate anaerobe which may be important in the prevention of stone formation. Its sole substrate for generation of ATP is oxalate. It may thereby metabolize its human host’s dietary oxalate and diminish intestinal absorption and subsequent urinary excretion of oxalate. There is evidence that the organism’s absence, perhaps sometimes due to courses of antibiotics, may be a cause of hyperoxaluria and stone formation. In early investigations, patients not colonized with the organism can be recolonized. Urinary oxalate can be diminished by accompanying an oxalate-containing meal with the organism. One study demonstrated that a preparation of lactic acid bacteria successfully reduced urinary oxalate excretion in 6 patients with calcium oxalate stones and hyperoxaluria. The mechanism of this effect is uncertain since these bacteria lacked the gene possessed by O. formigenes which codes for that organism’s oxalate uptake mechanism. The author is currently completing a small randomized controlled clinical trial with this preparation in calcium stone-forming patients with idiopathic hyperoxaluria.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          An alternative interpretation of nanobacteria-induced biomineralization.

           John Cisar,  Q Xu,  L. Hu (2000)
          The reported isolation of nanobacteria from human kidney stones raises the intriguing possibility that these microorganisms are etiological agents of pathological extraskeletal calcification [Kajander, E. O. & Ciftçioglu, N. (1998) Proc. Natl. Acad. Sci. USA 95, 8274-8279]. Nanobacteria were previously isolated from FBS after prolonged incubation in DMEM. These bacteria initiated biomineralization of the culture medium and were identified in calcified particles and biofilms by nucleic acid stains, 16S rDNA sequencing, electron microscopy, and the demonstration of a transferable biomineralization activity. We have now identified putative nanobacteria, not only from FBS, but also from human saliva and dental plaque after the incubation of 0.45-microm membrane-filtered samples in DMEM. Although biomineralization in our "cultures" was transferable to fresh DMEM, molecular examination of decalcified biofilms failed to detect nucleic acid or protein that would be expected from growth of a living entity. In addition, biomineralization was not inhibited by sodium azide. Furthermore, the 16S rDNA sequences previously ascribed to Nanobacterium sanguineum and Nanobacterium sp. were found to be indistinguishable from those of an environmental microorganism, Phyllobacterium mysinacearum, that has been previously detected as a contaminant in PCR. Thus, these data do not provide plausible support for the existence of a previously undiscovered bacterial genus. Instead, we provide evidence that biomineralization previously attributed to nanobacteria may be initiated by nonliving macromolecules and transferred on "subculture" by self-propagating microcrystalline apatite.
            • Record: found
            • Abstract: found
            • Article: not found

            Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration.

            Hyperoxaluria is a major risk factor for renal stones, and in most cases, it appears to be sustained by increased dietary load or increased intestinal absorption. Previous studies have shown that components of the endogenous digestive microflora, in particular Oxalobacter formigenes, utilize oxalate in the gut, thus limiting its absorption. We tested the hypothesis of whether oxaluria can be reduced by means of reducing intestinal absorption through feeding a mixture of freeze-dried lactic acid bacteria. Six patients with idiopathic calcium-oxalate urolithiasis and mild hyperoxaluria (>40 mg/24 h) received daily a mixture containing 8 x 10(11) freeze-dried lactic acid bacteria (L. acidophilus, L. plantarum, L. brevis, S. thermophilus, B. infantis) for four weeks. The 24-hour urinary excretion of oxalate was determined at the end of the study period and then one month after ending the treatment. The ability of bacteria to degrade oxalate and grow in oxalate-containing media, and the gene expression of Ox1T, an enzyme that catalyzes the transmembrane exchange of oxalate, also were investigated. The treatment resulted in a great reduction of the 24-hour excretion of oxalate in all six patients enrolled. Mean levels +/- SD were 33.5 +/- 15.9 mg/24 h at the end of the study period and 28.3 +/- 14.6 mg/24 h one month after treatment was interrupted compared with baseline values of 55.5 +/- 19.6 mg/24 h (P < 0.05). The treatment was associated with a strong reduction of the fecal excretion of oxalate in the two patients tested. Two bacterial strains among those used for the treatment (L. acidophilus and S. thermophilus) proved in vitro to degrade oxalate effectively, but their growth was somewhat inhibited by oxalate. One strain (B. infantis) showed a quite good degrading activity and grew rapidly in the oxalate-containing medium. L. plantarum and L. brevis showed a modest ability to degrade oxalate even though they grew significantly in oxalate-containing medium. No strain expressed the Ox1T gene. The urinary excretion of oxalate, a major risk factor for renal stone formation and growth in patients with idiopathic calcium-oxalate urolithiasis, can be greatly reduced with treatment using a high concentration of freeze-dried lactic acid bacteria. We postulate that the biological manipulation of the endogenous digestive microflora can be a novel approach for the prevention of urinary stone formation.
              • Record: found
              • Abstract: found
              • Article: not found

              Nanobacteria: an infectious cause for kidney stone formation.

              Nanobacteria are cytotoxic, sterile-filterable, gram-negative, atypical bacteria detected in bovine and human blood. Nanobacteria produce carbonate apatite on their cell walls. Data on Randall's plaques suggest that apatite may initiate kidney stone formation. We assessed nanobacteria in 72 consecutively collected kidney stones from Finnish patients. Nanobacteria and kidney stone units were compared using scanning electron microscopy (SEM). Demineralized kidney stones were screened for nanobacteria using a double-staining method and a specific culture method. Isolated nanobacteria were analyzed for mineral formation in vitro with Ca and 85Sr incorporation tests. SEM highlighted the resemblance in size and morphology of nanobacteria and the smallest apatite units in the kidney stones. Nanobacterial antigens could be detected after the demineralization of the stones in 1 N HCl. Nanobacteria were surprisingly resistant to this treatment, and cultures could be established from 93.1% of the stones. Only struvite stones had common bacteria, in addition to the nanobacteria. When the results of all of the assays were combined, 70 of the 72 stones (that is, 97.2%) were nanobacteria positive. Although apatite stones indicated highest nanobacteria antigen signals, the overall nanobacteria positivity did not depend on the stone type. The isolated nanobacteria produced apatite stones in vitro, measured by Ca and 85Sr incorporation. We propose that kidney stone formation is a nanobacterial disease analogous to Helicobacter pylori infection and peptic ulcer disease. Both diseases are initiated by bacterial infection and subsequently endogenous and dietary factors influence their progression.

                Author and article information

                Nephron Physiol
                Nephron Physiology
                S. Karger AG
                October 2004
                19 October 2004
                : 98
                : 2
                : p48-p54
                New York Harbor VA Medical Center and NYV School of Medicine, New York, N.Y., USA
                80264 Nephron Physiol 2004;98:p48–p54
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                References: 36, Pages: 1
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/80264


                Comment on this article