7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Equilibrium modeling of selenium binding from aqueous solutions by Candida utilis ATCC 9950 yeasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study investigated the effectiveness of selenium binding from its salt solution by Candida utilis ATCC 9950 yeast biomass cultured on a medium prepared from the agro-food industry wastes, containing an available source of carbon and nitrogen. Selenium binding by C. utilis yeast strain after 48 h of culturing at 28 °C from aqueous solutions with the addition of 30 mg Se/L reached a value of 2.28 mg Se/g of yeast biomass. The kinetics of selenium binding by the yeasts showed a better fit for the pseudo-second-order kinetic model compared to the pseudo-first-order one. Accumulation stability data were analyzed using the Freundlich and Langmuir isotherm models. The presence of competing anions such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SO}}_{4}^{{2 - }}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{HPO}}_{4}^{{2 - }}$$\end{document} at a concentration of 0.5 mM resulted in about 35% reduction of selenium binding by the examined C. utilis strain. FTIR analysis showed that sulfur compounds were involved in selenium biosorption by the yeast. Compounds containing ammonium groups appeared to be very important for selenium binding. The results of the study demonstrated that the yeast can be used to effectively bind selenium from aqueous solution. At the same time, it gives the opportunity to obtain a biomass rich in this deficient element, which can also be used in dietary supplement production.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review

          Selenium is one of the elements classified within the group of micronutrients which are necessary in trace amounts for the proper functioning of organisms. Selenium participates in the protection of cells against excess H2O2, in heavy metal detoxification, and regulation of the immune and reproductive systems as well. It also ensures the proper functioning of the thyroid gland. Selenium induces the occurrence of the selenoprotein synthesis process involved in the antioxidant defense mechanism of the organism. Recent years have brought much success in the studies on selenium. Anticarcinogenic properties of selenium against some cancers have been reported. Supplementation is increasingly becoming a solution to this problem. A large number of different supplementation methods are promoting studies in this area. Slight differences in the selenium content can result in excess or deficiency, therefore supplementation has to be done carefully and cautiously.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biosorption and bioaccumulation--the prospects for practical applications.

            The paper summarizes the present and future course of biosorption and bioaccumulation, as the branch of science, pointing out on their basic assumptions, philosophy and the goals. The processes are presented as new tools for separation technologies of XXI century. The paper is the discussion with the literature on the future prospects of those processes, pointing out that research should be oriented on the practical applications, in order to make technologies from the processes and also discusses other than environmental possible future applications. It presents an own point of view on these techniques, after some years of working in this very area. Biosorption and bioaccumulation, involve interactions and concentration of toxic metals or organic pollutants (e.g. dyes) in the biomass, either living (bioaccumulation) or non-living (biosorption). The processes play an important role in natural cycling of matter in the environment. The paper discusses the possibilities which offer research on pollutants-biomass interactions, pointing out that the key to elaborate an efficient method working for the nature would be to understand the mechanisms governing the processes, parameters which influence both equilibrium and kinetics, through the observation of naturally occurring phenomena. Only then we would be able to control and carry out under industrial regime, so the processes would work beneficially for the environment. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The use of high-selenium yeast to raise selenium status: how does it measure up?

              Selenium-enriched yeast (Se-yeast) is a common form of Se used to supplement the dietary intake of this important trace mineral. However, its availability within the European Union is under threat, owing to concerns expressed by the European Community (EC) Scientific Committee on Food that Se-yeast supplements are poorly characterised and could potentially cause the build up of Se in tissues to toxic levels. The present review examines the validity of these concerns. Diagrams of the biosynthesis and metabolism of Se compounds show which species can be expected to occur in Se-yeast preparations. Se-yeast manufacture is described together with quality-control measures applied by reputable manufacturers. The way in which speciation of Se-yeast is achieved is explained and results on amounts of Se species in various commercial products are tabulated. In all cases described, selenomethionine is the largest single species, accounting for 54-74 % of total Se. Se-yeast is capable of increasing the activity of the selenoenzymes and its bioavailability has been found to be higher than that of inorganic Se sources in all but one study. Intervention studies with Se-yeast have shown the benefit of this form in cancer prevention, on the immune response and on HIV infection. Of about one dozen supplementation studies, none has shown evidence of toxicity even up to an intake level of 800 microg Se/d over a period of years. It is concluded that Se-yeast from reputable manufacturers is adequately characterised, of reproducible quality, and that there is no evidence of toxicity even at levels far above the EC tolerable upper intake level of 300 microg/d.
                Bookmark

                Author and article information

                Contributors
                +48 225937664 , marek-kieliszek@wp.pl , marek_kieliszek@sggw.pl
                Journal
                3 Biotech
                3 Biotech
                3 Biotech
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2190-572X
                2190-5738
                27 August 2018
                27 August 2018
                September 2018
                : 8
                : 9
                : 388
                Affiliations
                ISNI 0000 0001 1955 7966, GRID grid.13276.31, Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, , Warsaw University of Life Sciences−SGGW, ; Nowoursynowska 159 C, 02-776 Warsaw, Poland
                Author information
                http://orcid.org/0000-0002-5836-4865
                Article
                1415
                10.1007/s13205-018-1415-8
                6111034
                30175025
                8eff49c3-cb65-4ce9-9d13-24fe668423b6
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 4 April 2018
                : 21 August 2018
                Funding
                Funded by: National Science Centre, Poland “Miniatura”
                Award ID: 2017/01/X/NZ9/00339
                Award Recipient :
                Funded by: Faculty of Food Science in Warsaw University of Life Sciences—SGGW, Warsaw
                Award ID: 505-10-092800-N00287-99
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2018

                selenium,yeast,kinetics,isotherm
                selenium, yeast, kinetics, isotherm

                Comments

                Comment on this article