4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance

      , ,
      Bioresource Technology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          The technological and economic prospects for CO2 utilization and removal

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation.

            Wheat straw is an abundant agricultural residue with low commercial value. An attractive alternative is utilization of wheat straw for bioethanol production. However, production costs based on the current technology are still too high, preventing commercialization of the process. In recent years, progress has been made in developing more effective pretreatment and hydrolysis processes leading to higher yield of sugars. The focus of this paper is to review the most recent advances in pretreatment, hydrolysis and fermentation of wheat straw. Based on the type of pretreatment method applied, a sugar yield of 74-99.6% of maximum theoretical was achieved after enzymatic hydrolysis of wheat straw. Various bacteria, yeasts and fungi have been investigated with the ethanol yield ranging from 65% to 99% of theoretical value. So far, the best results with respect to ethanol yield, final ethanol concentration and productivity were obtained with the native non-adapted Saccharomyses cerevisiae. Some recombinant bacteria and yeasts have shown promising results and are being considered for commercial scale-up. Wheat straw biorefinery could be the near-term solution for clean, efficient and economically-feasible production of bioethanol as well as high value-added products. Copyright 2009 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments

              Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulose-rich biomass resources available in huge amounts for bioethanol production. These agricultural residues are converted to bioethanol in several steps which are described here. This review enlightens various steps involved in production of the second-generation bioethanol. Mechanisms and recent advances in pretreatment, cellulases production and second-generation ethanol production processes are described here.
                Bookmark

                Author and article information

                Journal
                Bioresource Technology
                Bioresource Technology
                Elsevier BV
                09608524
                May 2021
                May 2021
                : 328
                : 124833
                Article
                10.1016/j.biortech.2021.124833
                33611017
                8f07d423-d897-4db8-8fec-06fb56f88341
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article