23
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pattern of Mutation Rates in the Germline of Drosophila melanogaster Males from a Large-Scale Mutation Screening Experiment

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sperm or eggs of sexual organisms go through a series of cell divisions from the fertilized egg; mutations can occur at each division. Mutations in the lineage of cells leading to the sperm or eggs are of particular importance because many such mutations may be shared by somatic tissues and also may be inherited, thus having a lasting consequence. For decades, little has been known about the pattern of the mutation rates along the germline development. Recently it was shown from a small portion of data that resulted from a large-scale mutation screening experiment that the rates of recessive lethal or nearly lethal mutations differ dramatically during the germline development of Drosophila melanogaster males. In this paper the full data set from the experiment and its analysis are reported by taking advantage of a recent methodologic advance. By analyzing the mutation patterns with different levels of recessive lethality, earlier published conclusions based on partial data are found to remain valid. Furthermore, it is found that for most nearly lethal mutations, the mutation rate at the first cell division is even greater than previous thought compared with those at other divisions. There is also some evidence that the mutation rate at the second division decreases rapidly but is still appreciably greater than those for the rest of the cleavage stage. The mutation rate at spermatogenesis is greater than late cleavage and stem-cell stages, but there is no evidence that rates are different among the five cell divisions of the spermatogenesis. We also found that a modestly biased sampling, leading to slightly more primordial germ cells after the eighth division than those reported in the literature, provides the best fit to the data. These findings provide conceptual and numerical basis for exploring the consequences of differential mutation rates during individual development.

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Chromatin dynamics during spermiogenesis.

          The function of sperm is to safely transport the haploid paternal genome to the egg containing the maternal genome. The subsequent fertilization leads to transmission of a new unique diploid genome to the next generation. Before the sperm can set out on its adventurous journey, remarkable arrangements need to be made during the post-meiotic stages of spermatogenesis. Haploid spermatids undergo extensive morphological changes, including a striking reorganization and compaction of their chromatin. Thereby, the nucleosomal, histone-based structure is nearly completely substituted by a protamine-based structure. This replacement is likely facilitated by incorporation of histone variants, post-translational histone modifications, chromatin-remodeling complexes, as well as transient DNA strand breaks. The consequences of mutations have revealed that a protamine-based chromatin is essential for fertility in mice but not in Drosophila. Nevertheless, loss of protamines in Drosophila increases the sensitivity to X-rays and thus supports the hypothesis that protamines are necessary to protect the paternal genome. Pharmaceutical approaches have provided the first mechanistic insights and have shown that hyperacetylation of histones just before their displacement is vital for progress in chromatin reorganization but is clearly not the sole inducer. In this review, we highlight the current knowledge on post-meiotic chromatin reorganization and reveal for the first time intriguing parallels in this process in Drosophila and mammals. We conclude with a model that illustrates the possible mechanisms that lead from a histone-based chromatin to a mainly protamine-based structure during spermatid differentiation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development. © 2013. Published by Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human.

            Spontaneous mutation rates per generation are similar among the three species considered here--Drosophila, mouse, and human--and are not related to time, as is often assumed. Spontaneous germline mutation rates per generation averaged among loci are less variable among species than they are among loci and tests and between gender. Mutation rates are highly variable over time in diverse lineages. Recent estimates of the number of germ cell divisions per generation are: for humans, 401 (30-year generation) in males and 31 in females; for mice, 62 (9-month generation) in males and 25 in females; and for Drosophila melanogaster, 35.5 (18-day generation) in males and 36.5 (25-day generation) in females. The relationships between germ cell division estimates of the two sexes in the three species closely reflect those between mutation rates in the sexes, although mutation rates per cell division vary among species. Whereas the overall rate per generation is constant among species, this consistency must be achieved by diverse mechanisms. Modifiers of mutation rates, on which selection might act, include germline characteristics that contribute disproportionately to the total mutation rates. The germline mutation rates between the sexes within a species are largely influenced by germ cell divisions per generation. Also, a large portion of the total mutations occur during the interval between the beginning of meiosis and differentiation of the soma from the germline. Significant genetic events contributing to mutations during this time may include meiosis, lack of DNA repair in sperm cells, methylation of CpG dinucleotides in mammalian sperm and early embryo, gonomeric fertilization, and rapid cleavage divisions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of the male germline stem cell population during aging of Drosophila melanogaster.

              Drosophila melanogaster has emerged as an important model system for the study of both stem cell biology and aging. Much is known about how molecular signals from the somatic niche regulate adult stem cells in the germline, and a variety of environmental factors as well as single point mutations have been shown to affect lifespan. Relatively little is known, however, about how aging affects specific populations of cells, particularly adult stem cells that may be susceptible to aging-related damage. Here we show that male germline stem cells (GSCs) are lost from the stem cell niche during aging, but are efficiently replaced to maintain overall stem cell number. We also find that the division rate of GSCs slows significantly during aging, and that this slowing correlates with a reduction in the number of somatic hub cells that contribute to the stem cell niche. Interestingly, slowing of stem cell division rate was not observed in long-lived methuselah mutant flies. We finally investigated whether two mechanisms that are thought to be used in other adult stem cell types to minimize the effects of aging were operative in this system. First, in many adult tissues stem cells exhibit markedly fewer cell cycles relative to transit-amplifying cells, presumably protecting the stem cell pool from replication-associated damage. Second, at any given time not all stem cells actively cycle, leading to 'clonal succession' from the reserve pool of initially quiescent stem cells. We find that neither of these mechanisms is used in Drosophila male GSCs.
                Bookmark

                Author and article information

                Contributors
                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                11 June 2014
                August 2014
                : 4
                : 8
                : 1503-1514
                Affiliations
                [* ]Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
                []Division of Biostatistics and Human Genetics Center, School of Public Health, The University of Texas at Houston, Houston, Texas
                []Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio
                [§ ]State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
                Author notes
                [1]

                These authors are first authors.

                [2 ]Corresponding author: Human Genetics Center, School of Public Health, Box 20186, 1200 Herman Pressler, Houston, TX 77030. E-mail: yunxin.fu@ 123456uth.tmc.edu
                Article
                GGG_011056
                10.1534/g3.114.011056
                4132180
                24924332
                8f08c0ae-56f4-41e9-907f-be380b5059fc
                Copyright © 2014 Gao et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 March 2014
                : 10 June 2014
                Page count
                Pages: 12
                Categories
                Investigations
                Custom metadata
                v1

                Genetics
                drosophila melanogaster,cell coalescent,germline mutation rate,likelihood inference
                Genetics
                drosophila melanogaster, cell coalescent, germline mutation rate, likelihood inference

                Comments

                Comment on this article