Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Role of P-Selectin in Platelet Sequestration in Pulmonary Capillaries during Endotoxemia

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: There is growing evidence that platelets accumulate in the lung and contribute to the pathogenesis of acute lung injury during endotoxemia. The aims of the present study were to localize platelet sequestration in the pulmonary microcirculation and to investigate the role of P-selectin as a molecular mechanism of platelet endothelial cell interaction. Methods: We used in vivo fluorescence microscopy to quantify the kinetics of fluorescently labeled erythrocytes and platelets in alveolar capillary networks in rabbit lungs. Results: Six hours after onset of endotoxin infusion we observed a massive rolling along and firm adherence of platelets to lung capillary endothelial cells whereas under control conditions no platelet sequestration was detected. P-selectin was expressed on the surface of separated platelets which were incubated with endotoxin and in lung tissue. Pretreatment of platelets with fucoidin, a P-selectin antagonist, significantly attenuated the endotoxin-induced platelet rolling and adherence. In contrast, intravenous infusion of fucoidin in endotoxin-treated rabbits did not inhibit platelet sequestration in pulmonary capillaries. Conclusion: We conclude that platelets accumulate in alveolar capillaries following endotoxemia. P-selectin expressed on the surface of platelets seems to play an important role in mediating this platelet-endothelial cell interaction.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial-leukocyte adhesion molecules.

           M. Bevilacqua (1992)
          One decade ago, vascular endothelium was commonly considered a "non-stick" lining of blood vessels that functioned only to prevent blood coagulation and to separate the vascular space from tissues. By comparison to many other cell types, endothelial cells were thought to be less active, less complex, and less interesting. Since that time, research concerning the endothelium has expanded dramatically and produced a new image of the vascular lining as an active participant in a wide variety of pathophysiological processes, including inflammation and immunity. Nowhere has the excitement been more intense than in the study of the molecular mechanisms of leukocyte adhesion to endothelium. Recent efforts resulted in the identification, characterization, and cloning of multiple endothelial cell-surface glycoproteins that support adhesion through an interaction with specific ligands (or counter-receptors) on leukocytes. The selectins, two of which are found on endothelium and one on leukocytes, support adhesion through the recognition of carbohydrates. Endothelial members of the immunoglobulin superfamily including ICAM-1 and VCAM-1/INCAM-110 bind to leukocyte cell-surface integrins. In various combinations, these and other molecules support leukocyte adhesion to the vessel wall and extravasation, key steps in our response to infection and tissue injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses.

            Here we have studied the involvement of endothelial heparan sulfate in inflammation by inactivating the enzyme N-acetyl glucosamine N-deacetylase-N-sulfotransferase-1 in endothelial cells and leukocytes, which is required for the addition of sulfate to the heparin sulfate chains. Mutant mice developed normally but showed impaired neutrophil infiltration in various inflammation models. These effects were due to changes in heparan sulfate specifically in endothelial cells. Decreased neutrophil infiltration was partially due to altered rolling velocity correlated with weaker binding of L-selectin to endothelial cells. Chemokine transcytosis across endothelial cells and presentation on the cell surface were also reduced, resulting in decreased neutrophil firm adhesion and migration. Thus, endothelial heparan sulfate has three functions in inflammation: by acting as a ligand for L-selectin during neutrophil rolling; in chemokine transcytosis; and by binding and presenting chemokines at the lumenal surface of the endothelium.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Selectins.

                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2006
                September 2006
                20 September 2006
                : 43
                : 5
                : 473-481
                Affiliations
                aDepartment of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg; bDepartment of Anesthesiology, University of Munich and cDepartment of Anesthesiology and Institute for Surgical Research, Ludwig Maximilians University, Munich, Germany
                Article
                95247 J Vasc Res 2006;43:473–481
                10.1159/000095247
                16926551
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, References: 36, Pages: 9
                Categories
                Research Paper

                Comments

                Comment on this article