21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Agriculture and the new challenges for photosynthesis research

        , ,
      New Phytologist
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A rising human population and changing patterns of land use mean that world food production rates will need to be increased by at least 50% by 2050, a massive rise in harvestable yield per hectare of the major crops such as rice (Oryza sativa) and wheat (Triticum aestivum). Combinations of breeding for improved morphology-related traits such as harvest index and increased inputs of water and fertilizer, which have sustained yield increases since the 1960s, will be neither sufficient nor sustainable. An important limiting factor will be the capacity to produce sufficient biomass during favourable growing periods. Here we analyse this problem in the context of increasing the efficiency of conversion of solar energy into biomass, that is, leaf and canopy photosynthesis. Focussing on crops carrying out C3 photosynthesis, we analyse the evidence for 'losses' in the process of conversion of solar energy into crop biomass and we explore novel mechanisms of improving biomass production rates, which have arisen from recent research into the fundamental primary processes of photosynthesis and carbohydrate metabolism. We show that there are several lines of evidence that these processes are not fully optimized for maximum yield. We put forward the hypothesis that the chloroplast itself should be given greater prominence as a sensor, processor and integrator of highly variable environmental signals to allow a more efficient transduction of energy supply into biomass production.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.

          A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Climate and the Efficiency of Crop Production in Britain [and Discussion]

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of stomata in sensing and driving environmental change.

              Stomata, the small pores on the surfaces of leaves and stalks, regulate the flow of gases in and out of leaves and thus plants as a whole. They adapt to local and global changes on all timescales from minutes to millennia. Recent data from diverse fields are establishing their central importance to plant physiology, evolution and global ecology. Stomatal morphology, distribution and behaviour respond to a spectrum of signals, from intracellular signalling to global climatic change. Such concerted adaptation results from a web of control systems, reminiscent of a 'scale-free' network, whose untangling requires integrated approaches beyond those currently used.
                Bookmark

                Author and article information

                Journal
                New Phytologist
                Wiley
                0028646X
                February 2009
                February 2009
                December 18 2008
                : 181
                : 3
                : 532-552
                Article
                10.1111/j.1469-8137.2008.02705.x
                19140947
                8f0e839c-6399-448f-9ebd-27b6f495eb07
                © 2008

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article