9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exogenous Administration of Recombinant MIF at Physiological Concentrations Failed to Attenuate Infarct Size in a Langendorff Perfused Isolated Mouse Heart Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Evidence suggests a two-pronged role of endogenous macrophage migration inhibitory factor (MIF) release in ischemia/reperfusion injury. We aimed to assess whether its exogenous administration confers cardioprotection.

          Methods

          Male C57/BL6 mice were randomly allocated to receive recombinant mouse MIF (rMIF) at physiological (ng/mL) concentrations in a dose–response fashion before or after a protocol of 35 min of ischemia and 2 h of reperfusion in an isolated Langendorff-perfused model with infarct size as endpoint. Isolated primary cardiomyocytes were also used for cell survival studies using rMIF at a supra-physiological concentration of 1 μg/mL. Pro-survival kinase activation was also studied using Western blot analyses.

          Results

          Exogenous MIF did not elicit a cardioprotective effect either when administered before the ischemic insult or when applied at reperfusion. rMIF did not confer protection when it was applied immediately before or after a hypoxia/reoxygenation insult in primary isolated cardiomyocytes. Consistently, hearts treated with MIF did not show a significant increase in phosphorylated Akt and ERK1/2.

          Conclusion

          The exogenous administration of rMIF in a physiological concentration range both before ischemia and at reperfusion did not show cardioprotective effects. Although these results do not address the role of endogenous MIF after an ischemic insult followed by reperfusion, they may limit the potential translational value of rMIF.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart.

          Understanding cellular response to environmental stress has broad implications for human disease. AMP-activated protein kinase (AMPK) orchestrates the regulation of energy-generating and -consuming pathways, and protects the heart against ischaemic injury and apoptosis. A role for circulating hormones such as adiponectin and leptin in the activation of AMPK has received recent attention. Whether local autocrine and paracrine factors within target organs such as the heart modulate AMPK is unknown. Here we show that macrophage migration inhibitory factor (MIF), an upstream regulator of inflammation, is released in the ischaemic heart, where it stimulates AMPK activation through CD74, promotes glucose uptake and protects the heart during ischaemia-reperfusion injury. Germline deletion of the Mif gene impairs ischaemic AMPK signalling in the mouse heart. Human fibroblasts with a low-activity MIF promoter polymorphism have diminished MIF release and AMPK activation during hypoxia. Thus, MIF modulates the activation of the cardioprotective AMPK pathway during ischaemia, functionally linking inflammation and metabolism in the heart. We anticipate that genetic variation in MIF expression may impact on the response of the human heart to ischaemia by the AMPK pathway, and that diagnostic MIF genotyping might predict risk in patients with coronary artery disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion.

            In the late 19th century, a number of investigators were working on perfecting isolated heart model, but it was Oscar Langendorff who, in 1895, pioneered the isolated perfused mammalian heart. Since that time, the Langendorff preparation has evolved and provided a wealth of data underpinning our understanding of the fundamental physiology of the heart: its contractile function, coronary blood flow regulation and cardiac metabolism. In more recent times, the procedure has been used to probe pathophysiology of ischaemia/reperfusion and disease states, and with the dawn of molecular biology and genetic manipulation, the Langendorff perfused heart has remained a stalwart tool in the study of the impact upon the physiology of the heart by pharmacological inhibitors and targeted deletion or up-regulation of genes and their impact upon intracellular signalling and adaption to clinically relevant stressful stimuli. We present here the basic structure of the Langendorff system and the fundamental experimental rules which warrant a viable heart preparation. In addition, we discuss the use of the isolated retrograde perfused heart in the model of ischaemia-reperfusion injury ex-vivo, and its applicability to other areas of study. The Langendorff perfusion apparatus is highly adaptable and this is reflected not only in the procedure's longevity but also in the number of different applications to which it has been turned. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impaired macrophage migration inhibitory factor-AMP-activated protein kinase activation and ischemic recovery in the senescent heart.

              Elderly patients are more sensitive than younger patients to myocardial ischemia, which results in higher mortality. We investigated how aging affects the cardioprotective AMP-activated protein kinase (AMPK) signaling pathway. Ischemic AMPK activation was impaired in aged compared with young murine hearts. The expression and secretion of the AMPK upstream regulator, macrophage migration inhibitory factor (MIF), were lower in aged compared with young adult hearts. Additionally, the levels of hypoxia-inducible factor 1alpha, a known transcriptional activator of MIF, were reduced in aged compared with young hearts. Ischemia-induced AMPK activation in MIF knockout mice was blunted, leading to greater contractile dysfunction in MIF-deficient than in wild-type hearts. Furthermore, intramyocardial injection of adenovirus encoding MIF in aged mice increased MIF expression and ischemic AMPK activation and reduced infarct size. An impaired MIF-AMPK activation response in senescence thus may be attributed to an aging-associated defect in hypoxia-inducible factor 1alpha, the transcription factor for MIF. In the clinical setting, impaired cardiac hypoxia-inducible factor 1alpha activation and consequent reduced MIF expression may play an important role in the increased susceptibility to myocardial ischemia observed in older cardiac patients.
                Bookmark

                Author and article information

                Contributors
                d.yellon@ucl.ac.uk
                Journal
                Cardiovasc Drugs Ther
                Cardiovasc Drugs Ther
                Cardiovascular Drugs and Therapy
                Springer US (New York )
                0920-3206
                1573-7241
                22 June 2016
                22 June 2016
                2016
                : 30
                : 5
                : 445-453
                Affiliations
                [1 ]The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX 2 UK
                [2 ]Department of Intensive Care Medicine, University Hospital, Aachen, RWTH Germany
                [3 ]Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, 81377 Munich, Germany
                [4 ]Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
                [5 ]NIHR UCLH Biomedical Research Centre, University College London Hospital & Medical School, London, UK
                Article
                6673
                10.1007/s10557-016-6673-2
                5055564
                27335054
                8f18da16-ba8a-4dc1-b0e6-fbed0a7fa99a
                © The Author(s) 2016

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000272, National Institute for Health Research;
                Funded by: FundRef http://dx.doi.org/10.13039/100008052, Fundación Alfonso Martín Escudero;
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Funded by: FundRef http://dx.doi.org/10.13039/501100000274, British Heart Foundation;
                Categories
                Original Article
                Custom metadata
                © Springer Science+Business Media New York 2016

                Cardiovascular Medicine
                ischemic preconditioning,ischemia–reperfusion,myocardial infarction,macrophage migration inhibitory factor

                Comments

                Comment on this article