44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Life Nutrition, Epigenetics and Programming of Later Life Disease

      review-article
      Nutrients
      MDPI
      developmental programming, maternal nutrition, epigenetics, DNA methylation, transgenerational

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The global pandemic of obesity and type 2 diabetes is often causally linked to marked changes in diet and lifestyle; namely marked increases in dietary intakes of high energy diets and concomitant reductions in physical activity levels. However, less attention has been paid to the role of developmental plasticity and alterations in phenotypic outcomes resulting from altered environmental conditions during the early life period. Human and experimental animal studies have highlighted the link between alterations in the early life environment and increased risk of obesity and metabolic disorders in later life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. In particular, the nutritional environment in which the fetus or infant develops influences the risk of metabolic disorders in offspring. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, as epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. Moreover, evidence exists, at least from animal models, that such epigenetic programming should be viewed as a transgenerational phenomenon. However, the mechanisms by which early environmental insults can have long-term effects on offspring are relatively unclear. Thus far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification, and microRNA) and permanent changes in cellular ageing. A better understanding of the epigenetic basis of developmental programming and how these effects may be transmitted across generations is essential for the implementation of initiatives aimed at curbing the current obesity and diabetes crisis.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetic programming by maternal behavior.

          Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.

            A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B(12) and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes.

              Maternal obesity during pregnancy increases the risk of obesity in the offspring. Obesity, arising from an imbalance of energy intake and expenditure, can be driven by the ingestion of palatable [high fat (HF), high sugar], energy-dense foods. Dopamine and opioid circuitry are neural substrates associated with reward that can affect animals' preference for palatable foods. Using a mouse model, the long-term effect of maternal consumption of a HF diet on dopamine and opioid gene expression within the mesocorticolimbic reward circuitry and hypothalamus of the offspring was investigated. Mice from dams fed a HF diet during pregnancy and lactation showed an increased preference for sucrose and fat. Gene expression, measured using quantitative real-time PCR, revealed a significant approximately 3- to 10-fold up-regulation of dopamine reuptake transporter (DAT) in the ventral tegmental area, nucleus accumbens, and prefrontal cortex and a down-regulation of DAT in the hypothalamus. Additionally, expression of both μ-opioid receptor (MOR) and preproenkephalin (PENK) was increased in nucleus accumbens, prefrontal cortex, and hypothalamus of mice from dams that consumed the HF diet. Epigenetic mechanisms have been associated with long-term programming of gene expression after various in utero insults. We observed global and gene-specific (DAT, MOR, and PENK) promoter DNA hypomethylation in the brains of offspring from dams that consumed the HF diet. These data demonstrate that maternal consumption of a HF diet can change the offsprings' epigenetic marks (DNA hypomethylation) in association with long-term alterations in gene expression (dopamine and opioids) and behavior (preference for palatable foods).
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                02 June 2014
                June 2014
                : 6
                : 6
                : 2165-2178
                Affiliations
                Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, 85 Park Road, Grafton, Auckland 1142, New Zealand; E-Mail: m.vickers@ 123456auckland.ac.nz ; Tel.: +64-9-923-6687; Fax +64-9-373-7039
                Article
                nutrients-06-02165
                10.3390/nu6062165
                4073141
                24892374
                8f1aca13-3654-46be-b099-6852df01782b
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 17 March 2014
                : 21 April 2014
                : 19 May 2014
                Categories
                Review

                Nutrition & Dietetics
                developmental programming,maternal nutrition,epigenetics,dna methylation,transgenerational

                Comments

                Comment on this article