21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Choline acetyltransferase is found in terminals of horizontal cells that label with GABA, nitric oxide synthase and calcium binding proteins in the turtle retina.

      Brain Research
      Animals, Calcium-Binding Proteins, metabolism, Choline O-Acetyltransferase, Dendrites, ultrastructure, Immunohistochemistry, Nerve Endings, Nitric Oxide Synthase, Nitric Oxide Synthase Type I, Photoreceptor Cells, Retina, cytology, Turtles, gamma-Aminobutyric Acid

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we discriminated the various types of horizontal cell in the turtle retina on their content of neuroactive substances. Double label immunocytochemistry was performed on sectioned and wholemount retina using antisera to neural- and endothelial-nitric oxide synthase (nNOS, and eNOS), calretinin (CR), calbindin (CB), gamma-aminobutyric acid (GABA) and choline acetyltransferase (ChAT). H1 cells and their axon terminals label with CR, CB and GABA. Only H1 axon terminals label with eNOS. H2 cells contain CB, CR, nNOS and GABA maybe in their dendrites. H3 cells label only with nNOS. The localization of nNOS in the H2 and H3 cells is a novel finding. None of these antibodies labels H4 cells. The photoreceptor subtypes have been differentiated by different intensity of labeling with CB. The accessory member of the double cone is less intensely labeled with CB than the principal member and rods and blue cones do not appear to label at all. ChAT-IR is located in terminal boutons of H1 and H2 horizontal cells and H1 axon terminals and these boutons contact rods and all spectral types of cones. Clearly, GABA is present in H1 horizontal cells and may be used in neurotransmission between horizontal cells and possibly for feedback pathways to photoreceptors. The evidence of nNOS immunoreactivity in H2 and H3 horizontal cells, combined with available physiological evidence, suggests that NO may be involved in electrical coupling and/or modulation of synaptic input to these types of cells. Furthermore, our results raise the possibility that cholinergic synaptic transmission may occur from horizontal cell processes to photoreceptors in the outer plexiform layer of the turtle retina.

          Related collections

          Author and article information

          Comments

          Comment on this article