12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Profile of rociletinib and its potential in the treatment of non-small-cell lung cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with non-small-cell lung cancer (NSCLC) harboring activating mutations in EGFR benefit from treatment with EGFR small-molecule tyrosine-kinase inhibitors. However, the development of acquired resistance to EGFR inhibitors is universal and limits treatment efficacy. Over half of patients receiving first-generation EGFR inhibitors (erlotinib and gefitinib) develop resistance via the gatekeeper EGFR T790M ( EGFR T790M) mutation, and therapies able to overcome T790M-mediated resistance have been an unmet need in NSCLC. Rociletinib (CO-1686) is a third-generation small-molecule EGFR inhibitor with potent activity against EGFR T790M currently in advanced clinical development in NSCLC. Early clinical data suggested significant activity in EGFR-mutant NSCLC harboring T790M alterations. However, important questions regarding side-effect profile, comparability to competitor compounds, acquired resistance, EGFR-therapy sequencing, and combination therapies remain. Here, we review the available preclinical and clinical data for rociletinib, highlight the comparison to other third-generation EGFR inhibitors, and discuss resistance implications and future directions in NSCLC.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Rociletinib in EGFR-mutated non-small-cell lung cancer.

          Non-small-cell lung cancer (NSCLC) with a mutation in the gene encoding epidermal growth factor receptor (EGFR) is sensitive to approved EGFR inhibitors, but resistance develops, mediated by the T790M EGFR mutation in most cases. Rociletinib (CO-1686) is an EGFR inhibitor active in preclinical models of EGFR-mutated NSCLC with or without T790M. In this phase 1-2 study, we administered rociletinib to patients with EGFR-mutated NSCLC who had disease progression during previous treatment with an existing EGFR inhibitor. In the expansion (phase 2) part of the study, patients with T790M-positive disease received rociletinib at a dose of 500 mg twice daily, 625 mg twice daily, or 750 mg twice daily. Key objectives were assessment of safety, side-effect profile, pharmacokinetics, and preliminary antitumor activity of rociletinib. Tumor biopsies to identify T790M were performed during screening. Treatment was administered in continuous 21-day cycles. A total of 130 patients were enrolled. The first 57 patients to be enrolled received the free-base form of rociletinib (150 mg once daily to 900 mg twice daily). The remaining patients received the hydrogen bromide salt (HBr) form (500 mg twice daily to 1000 mg twice daily). A maximum tolerated dose (the highest dose associated with a rate of dose-limiting toxic effects of less than 33%) was not identified. The only common dose-limiting adverse event was hyperglycemia. In an efficacy analysis that included patients who received free-base rociletinib at a dose of 900 mg twice daily or the HBr form at any dose, the objective response rate among the 46 patients with T790M-positive disease who could be evaluated was 59% (95% confidence interval [CI], 45 to 73), and the rate among the 17 patients with T790M-negative disease who could be evaluated was 29% (95% CI, 8 to 51). Rociletinib was active in patients with EGFR-mutated NSCLC associated with the T790M resistance mutation. (Funded by Clovis Oncology; ClinicalTrials.gov number, NCT01526928.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib.

            Non-small cell lung cancers (NSCLCs) with activating mutations in the kinase domain of the epidermal growth factor receptor (EGFR) demonstrate dramatic, but transient, responses to the reversible tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Some recurrent tumors have a common secondary mutation in the EGFR kinase domain, T790M, conferring drug resistance, but in other cases the mechanism underlying acquired resistance is unknown. In studying multiple sites of recurrent NSCLCs, we detected T790M in only a small percentage of tumor cells. To identify additional mechanisms of acquired resistance to gefitinib, we used NSCLC cells harboring an activating EGFR mutation to generate multiple resistant clones in vitro. These drug-resistant cells demonstrate continued dependence on EGFR and ERBB2 signaling for their viability and have not acquired secondary EGFR mutations. However, they display increased internalization of ligand-activated EGFR, consistent with altered receptor trafficking. Although gefitinib-resistant clones are cross-resistant to related anilinoquinazolines, they demonstrate sensitivity to a class of irreversible inhibitors of EGFR. These inhibitors also show effective inhibition of signaling by T790M-mutant EGFR and killing of NSCLC cells with the T790M mutation. Both mechanisms of gefitinib resistance are therefore circumvented by irreversible tyrosine kinase inhibitors. Our findings suggest that one of these, HKI-272, may prove highly effective in the treatment of EGFR-mutant NSCLCs, including tumors that have become resistant to gefitinib or erlotinib.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations.

              EGFR-mutant lung cancers responsive to reversible EGFR inhibitors (gefitinib/erlotinib) develop acquired resistance, mediated by second-site EGFR T790M mutation in >50% of cases. Preclinically, afatinib (irreversible ErbB family blocker) plus cetuximab (anti-EGFR monoclonal antibody) overcomes T790M-mediated resistance. This phase Ib study combining afatinib and cetuximab enrolled heavily pretreated patients with advanced EGFR-mutant lung cancer and acquired resistance to erlotinib/gefitinib. Patients provided post-acquired-resistance tumor samples for profiling EGFR mutations. Among 126 patients, objective response rate (overall 29%) was comparable in T790M-positive and T790M-negative tumors (32% vs. 25%; P = 0.341). Median progression-free survival was 4.7 months (95% confidence interval, 4.3-6.4), and the median duration of confirmed objective response was 5.7 months (range, 1.8-24.4). Therapy-related grade 3/4 adverse events occurred in 44%/2% of patients. Afatinib-cetuximab demonstrated robust clinical activity and a manageable safety profile in EGFR-mutant lung cancers with acquired resistance to gefitinib or erlotinib, both with and without T790M mutations, warranting further investigation. This article reports the results of a trial combining afatinib and cetuximab in patients with acquired resistance and details the first clinical proof-of-concept for the preclinical hypothesis that a significant proportion of tumors in patients with acquired resistance to gefitinib/erlotinib remain dependent on EGFR signaling for survival. ©2014 American Association for Cancer Research.
                Bookmark

                Author and article information

                Journal
                Lung Cancer (Auckl)
                Lung Cancer (Auckl)
                Lung Cancer: Targets and Therapy
                Lung Cancer: Targets and Therapy
                Dove Medical Press
                1179-2728
                2016
                18 May 2016
                : 7
                : 91-97
                Affiliations
                [1 ]Division of Hematology/Oncology, University of California Irvine, Irvine, CA
                [2 ]Angeles Clinic and Research Institute
                [3 ]Cedars-Sinai Medical Center, Los Angeles, CA, USA
                Author notes
                Correspondence: Samuel J Klempner, Precision Medicine Program, Angeles Clinic and Research Institute, 11818 Wilshire Boulevard, Los Angeles, CA 90025, USA, Tel +1 310 231 2154, Fax + 1 310 231 2172, Email sklempner@ 123456theangelesclinic.org
                Article
                lctt-7-091
                10.2147/LCTT.S94337
                5310702
                28210165
                8f27e60e-3ef9-40e5-90a2-54b931143976
                © 2016 Tran and Klempner. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                lung cancer,rociletinib,egfr,t790m,co-1686,resistance,tyrosine-kinase inhibitor

                Comments

                Comment on this article