525
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Promise of Neuroprotective Agents in Parkinson’s Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available.

          Related collections

          Most cited references272

          • Record: found
          • Abstract: found
          • Article: not found

          The steroid and thyroid hormone receptor superfamily.

          Analyses of steroid receptors are important for understanding molecular details of transcriptional control, as well as providing insight as to how an individual transacting factor contributes to cell identity and function. These studies have led to the identification of a superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid. Although animals employ complex and often distinct ways to control their physiology and development, the discovery of receptor-related molecules in a wide range of species suggests that mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain.

            Despite a growing body of evidence that Vitamin D is involved in mammalian brain functioning, there has been a lack of direct evidence about its role in the human brain. This paper reports, for the first time, the distribution of the 1,25-dihydroxyvitamin D3 receptor (VDR), and 1alpha-hydroxylase (1alpha-OHase), the enzyme responsible for the formation of the active vitamin in the human brain. The receptor and the enzyme were found in both neurons and glial cells in a regional and layer-specific pattern. The VDR was restricted to the nucleus whilst 1alpha-OHase was distributed throughout the cytoplasm. The distribution of the VDR in human brain was strikingly similar to that reported in rodents. Many regions contained equivalent amounts of both the VDR and 1alpha-OHase, however the macrocellular cells within the nucleus basalis of Meynert (NBM) and the Purkinje cells in the cerebellum expressed 1alpha-OHase in the absence of VDR. The strongest immunohistochemical staining for both the receptor and enzyme was in the hypothalamus and in the large (presumably dopaminergic) neurons within the substantia nigra. The observed distribution of the VDR is consistent with the proposal that Vitamin D operates in a similar fashion to the known neurosteroids. The widespread distribution of 1alpha-OHase and the VDR suggests that Vitamin D may have autocrine/paracrine properties in the human brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis.

              During primate evolution, a major factor in lengthening life-span and decreasing age-specific cancer rates may have been improved protective mechanisms against oxygen radicals. We propose that one of these protective systems is plasma uric acid, the level of which increased markedly during primate evolution as a consequence of a series of mutations. Uric acid is a powerful antioxidant and is a scavenger of singlet oxygen and radicals. We show that, at physiological concentrations, urate reduces the oxo-heme oxidant formed by peroxide reaction with hemoglobin, protects erythrocyte ghosts against lipid peroxidation, and protects erythrocytes from peroxidative damage leading to lysis. Urate is about as effective an antioxidant as ascorbate in these experiments. Urate is much more easily oxidized than deoxynucleosides by singlet oxygen and is destroyed by hydroxyl radicals at a comparable rate. The plasma urate levels in humans (about 300 microM) is considerably higher than the ascorbate level, making it one of the major antioxidants in humans. Previous work on urate reported in the literature supports our experiments and interpretations, although the findings were not discussed in a physiological context.
                Bookmark

                Author and article information

                Journal
                Front Neurol
                Front. Neur.
                Frontiers in Neurology
                Frontiers Research Foundation
                1664-2295
                10 October 2011
                21 November 2011
                2011
                : 2
                : 68
                Affiliations
                [1] 1simpleDepartment of Biological Sciences, DePaul University Chicago, IL, USA
                [2] 2simpleDepartment of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
                Author notes

                Edited by: Steven L. Roberds, Tuberous Sclerosis Alliance, USA

                Reviewed by: P. Hemachandra Reddy, Oregon Health and Science University, USA; Jason B. Wu, Cedars-Sinai Medical Center, USA

                *Correspondence: Judith A. Potashkin, Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3037, USA. e-mail: judy.potashkin@ 123456rosalindfranklin.edu

                This article was submitted to Frontiers in Neuropharmacology, a specialty of Frontiers in Neurology.

                Article
                10.3389/fneur.2011.00068
                3221408
                22125548
                8f38d75b-dfdd-438d-884c-562c07b09784
                Copyright © 2011 Seidl and Potashkin.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 12 September 2011
                : 21 October 2011
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 298, Pages: 19, Words: 18355
                Categories
                Neuroscience
                Review Article

                Neurology
                neurodegeneration,parkinson’s disease,neuroprotection
                Neurology
                neurodegeneration, parkinson’s disease, neuroprotection

                Comments

                Comment on this article