12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of microtubule dynamic instability by the carboxy-terminal tail of β-tubulin

      research-article
      ,
      Life science alliance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dynamic instability is an intrinsic property of microtubules; however, we do not understand what domains of αβ-tubulins regulate this activity or how these regulate microtubule networks in cells. Here, we define a role for the negatively charged carboxy-terminal tail (CTT) domain of β-tubulin in regulating dynamic instability. By combining in vitro studies with purified mammalian tubulin and in vivo studies with tubulin mutants in budding yeast, we demonstrate that β-tubulin CTT inhibits microtubule stability and regulates the structure and stability of microtubule plus ends. Tubulin that lacks β-tubulin CTT polymerizes faster and depolymerizes slower in vitro and forms microtubules that are more prone to catastrophe. The ends of these microtubules exhibit a more blunted morphology and rapidly switch to disassembly after tubulin depletion. In addition, we show that β-tubulin CTT is required for magnesium cations to promote depolymerization. We propose that β-tubulin CTT regulates the assembly of stable microtubule ends and provides a tunable mechanism to coordinate dynamic instability with ionic strength in the cell.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies

          We have developed video microscopy methods to visualize the assembly and disassembly of individual microtubules at 33-ms intervals. Porcine brain tubulin, free of microtubule-associated proteins, was assembled onto axoneme fragments at 37 degrees C, and the dynamic behavior of the plus and minus ends of microtubules was analyzed for tubulin concentrations between 7 and 15.5 microM. Elongation and rapid shortening were distinctly different phases. At each end, the elongation phase was characterized by a second order association and a substantial first order dissociation reaction. Association rate constants were 8.9 and 4.3 microM-1 s-1 for the plus and minus ends, respectively; and the corresponding dissociation rate constants were 44 and 23 s-1. For both ends, the rate of tubulin dissociation equaled the rate of tubulin association at 5 microM. The rate of rapid shortening was similar at the two ends (plus = 733 s-1; minus = 915 s-1), and did not vary with tubulin concentration. Transitions between phases were abrupt and stochastic. As the tubulin concentration was increased, catastrophe frequency decreased at both ends, and rescue frequency increased dramatically at the minus end. This resulted in fewer rapid shortening phases at higher tubulin concentrations for both ends and shorter rapid shortening phases at the minus end. At each concentration, the frequency of catastrophe was slightly greater at the plus end, and the frequency of rescue was greater at the minus end. Our data demonstrate that microtubules assembled from pure tubulin undergo dynamic instability over a twofold range of tubulin concentrations, and that the dynamic instability of the plus and minus ends of microtubules can be significantly different. Our analysis indicates that this difference could produce treadmilling, and establishes general limits on the effectiveness of length redistribution as a measure of dynamic instability. Our results are consistent with the existence of a GTP cap during elongation, but are not consistent with existing GTP cap models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms

            Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha- tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha- tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus- membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates

              Observation of microtubule growth at different rates by cryo-electron microscopy reveals that the ends range from blunt to long, gently curved sheets. The mean sheet length increases with the growth rate while the width of the distributions increases with the extent of assembly. The combination of a concentration dependent growth rate of the tubulin sheet with a variable closure rate of the microtubule cylinder, results in a model in which stochastic fluctuations in sheet length and tubulin conformation confine GTP-tubulins to microtubule ends. We propose that the variability of microtubule growth rate observed by video microscopy (Gildersleeve, R. F., A. R. Cross, K. E. Cullen, A. P. Fagen, and R. C. Williams. 1992. J. Biol. Chem. 267: 7995- 8006, and this study) is due to the variation in the rate of cylinder closure. The curvature of the sheets at the end of growing microtubules and the small oligomeric structures observed at the end of disassembling microtubules, indicate that tubulin molecules undergo conformational changes both during assembly and disassembly.
                Bookmark

                Author and article information

                Journal
                101728869
                47669
                Life Sci Alliance
                Life Sci Alliance
                Life science alliance
                2575-1077
                19 June 2018
                19 April 2018
                May 2018
                28 June 2018
                : 1
                : 2
                : e201800054
                Affiliations
                Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
                Author notes
                Article
                NIHMS975740
                10.26508/lsa.201800054
                6022761
                29963657
                8f46911a-6912-435b-adf7-f3da23af1973

                This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Article

                Comments

                Comment on this article