5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Macrophages heterogeneity in atherosclerosis – implications for therapy

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis is a chronic inflammatory disease occurring within the artery wall and is an underlying cause of cardiovascular complications, including myocardial infarction, stroke and peripheral vascular disease. Its pathogenesis involves many immune cell types with a well accepted role for monocyte/macrophages. Cholesterol-loaded macrophages are a characteristic feature of plaques and are major players in all stages of plaque development. As well as modulating lipid metabolism, macrophages secrete inflammatory cytokines, chemokines and reactive oxygen and nitrogen species that drive pathogenesis. They also produce proteases and tissue factor that contribute to plaque rupture and thrombosis. Macrophages are however heterogeneous cells and when appropriately activated, they phagocytose cytotoxic lipoproteins, clear apoptotic bodies, secrete anti-inflammatory cytokines and synthesize matrix repair proteins that stabilize vulnerable plaques. Pharmacological modulation of macrophage activity therefore represents a potential therapeutic strategy for atherosclerosis. The aim of this review is to provide an overview of the current understanding of the different macrophage subsets and their monocyte precursors, and, the implications of these subsets for atherosclerosis. This will present a foundation for highlighting novel opportunities to exploit the heterogeneity of macrophages as important diagnostic and therapeutic targets for atherosclerosis and its associated diseases.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance.

          Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Atherosclerosis. the road ahead.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults.

              Mortality resulting from coronary heart disease (CHD), cardiovascular disease (CVD), and all causes in persons with diabetes and pre-existing CVD is high; however, these risks compared with those with metabolic syndrome (MetS) are unclear. We examined the impact of MetS on CHD, CVD, and overall mortality among US adults. In a prospective cohort study, 6255 subjects 30 to 75 years of age (54% female) (representative of 64 million adults in the United States) from the Second National Health and Nutrition Examination Survey were followed for a mean+/-SD of 13.3+/-3.8 years. MetS was defined by modified National Cholesterol Education Program criteria. From sample-weighted multivariable Cox proportional-hazards regression, compared with those with neither MetS nor prior CVD, age-, gender-, and risk factor-adjusted hazard ratios (HRs) for CHD mortality were 2.02 (95% CI, 1.42 to 2.89) for those with MetS and 4.19 (95% CI, 3.04 to 5.79) for those with pre-existing CVD. For CVD mortality, HRs were 1.82 (95% CI, 1.40 to 2.37) and 3.14 (95% CI, 2.49 to 3.96), respectively; for overall mortality, HRs were 1.40 (95% CI, 1.19 to 1.66) and 1.87 (95% CI, 1.60 to 2.17), respectively. In persons with MetS but without diabetes, risks of CHD and CVD mortality remained elevated. Diabetes predicted all mortality end points. Those with even 1 to 2 MetS risk factors were at increased risk for mortality from CHD and CVD. Moreover, MetS more strongly predicts CHD, CVD, and total mortality than its individual components. CHD, CVD, and total mortality are significantly higher in US adults with than in those without MetS.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                August 2010
                12 July 2010
                : 14
                : 8
                : 2055-2065
                Affiliations
                School of Medicine and Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill Aberdeen, UK
                Author notes
                *Correspondence to: Heather M. WILSON, School of Medicine and Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK. Tel.: (+44) 1224 553634 Fax: (+44) 1224 555766 E-mail: h.m.wilson@ 123456abdn.ac.uk
                Article
                10.1111/j.1582-4934.2010.01121.x
                3822996
                20629993
                8f478fa2-b835-4307-a473-31f4071619d9
                © 2010 The Author Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 19 April 2010
                : 28 June 2010
                Categories
                Reviews

                Molecular medicine
                monocyte,macrophage,m1,m2,activation,atherosclerosis,inflammation,immunomodulation,imaging,plaque stability

                Comments

                Comment on this article