3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolutionary pattern of Macaca fascicularis in Southeast Asia inferred using Y-chromosomal gene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We analyzed a combined segment (2032-bp) of the sex-determining region and the testis-specific protein of the Y-chromosome (Y-DNA) gene to clarify the gene flow and phylogenetic relationships of the long-tailed macaques ( Macaca fascicularis) in Southeast Asia. Phylogenetic relationships were constructed using the maximum likelihood, Bayesian inference, and the median-joining network from a total of 164 adult male M. fascicularis from 62 localities in Malaysia, including sequences from the other regions from previous studies.

          Results

          Based on Y-DNA, we confirm the presence of two lineages of M. fascicularis: the Indochinese and Sundaic lineages. The Indochinese lineage is represented by M. fascicularis located northwards of the Surat Thani-Krabi depression region and is introgressed by the Macaca mulatta Y-DNA. The Sundaic lineage is free from such hybridization event, thus defined as the original carrier of the M. fascicularis Y-DNA. We further revealed that the Sundaic lineage differentiated into two forms: the insular and the continental forms. The insular form, which represents the ancestral form of M. fascicularis, consists of two haplotypes: a single homogenous haplotype occupying the island of Borneo, Philippines, and southern Sumatra; and the Javan haplotype . The more diverse continental form consists of 17 haplotypes in which a dominant haplotype was shared by individuals from southern Thai Peninsular (south of Surat Thani-Krabi depression), Peninsular Malaysia, and Sumatra. Uniquely, Sumatra contains both the continental and insular Y-DNA which can be explained by a secondary contact hypothesis.

          Conclusions

          Overall, the findings in this study are important: (1) to help authority particularly in Malaysia on the population management activities including translocation and culling of conflict M. fascicularis, (2) to identify the unknown origin of captive M. fascicularis used in biomedical research, and; (3) the separation between the continental and insular forms warrants for the treatment as separate management units.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

          We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.

            Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.

              The recently-developed statistical method known as the "bootstrap" can be used to place confidence intervals on phylogenies. It involves resampling points from one's own data, with replacement, to create a series of bootstrap samples of the same size as the original data. Each of these is analyzed, and the variation among the resulting estimates taken to indicate the size of the error involved in making estimates from the original data. In the case of phylogenies, it is argued that the proper method of resampling is to keep all of the original species while sampling characters with replacement, under the assumption that the characters have been independently drawn by the systematist and have evolved independently. Majority-rule consensus trees can be used to construct a phylogeny showing all of the inferred monophyletic groups that occurred in a majority of the bootstrap samples. If a group shows up 95% of the time or more, the evidence for it is taken to be statistically significant. Existing computer programs can be used to analyze different bootstrap samples by using weights on the characters, the weight of a character being how many times it was drawn in bootstrap sampling. When all characters are perfectly compatible, as envisioned by Hennig, bootstrap sampling becomes unnecessary; the bootstrap method would show significant evidence for a group if it is defined by three or more characters.
                Bookmark

                Author and article information

                Contributors
                akfali@unimas.my
                Journal
                BMC Ecol Evol
                BMC Ecol Evol
                BMC Ecology and Evolution
                BioMed Central (London )
                2730-7182
                15 February 2021
                15 February 2021
                2021
                : 21
                : 26
                Affiliations
                [1 ]National Wildlife Forensic Laboratory, Ex-Situ Conservation Division, Department of Wildlife and National Parks (DWNP) Peninsular Malaysia, KM 10 Cheras Road, 56100 Kuala Lumpur, Malaysia
                [2 ]GRID grid.412253.3, ISNI 0000 0000 9534 9846, Faculty of Resource Science and Technology (FRST), , Universiti Malaysia Sarawak (UNIMAS), ; 94300 Kota Samarahan, Sarawak Malaysia
                [3 ]GRID grid.412255.5, ISNI 0000 0000 9284 9319, Institute of Tropical Biodiversity and Sustainable Development (ITBSD), , Universiti Malaysia Terengganu (UMT), ; 21030 Kuala Nerus, Terengganu Malaysia
                [4 ]GRID grid.467840.9, ISNI 0000 0001 2230 9904, Fellow Academy of Sciences Malaysia, ; Level 20, West Wing, Tingkat 20, Menara MATRADE, Jalan Sultan Haji Ahmad Shah, 50480 Kuala Lumpur, Malaysia
                Author information
                http://orcid.org/0000-0001-7585-4885
                Article
                1757
                10.1186/s12862-021-01757-1
                7885488
                33588750
                8f47936f-2d00-496b-ad25-71a97edb6796
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 August 2020
                : 28 January 2021
                Funding
                Funded by: Proboscis Genome Research grant
                Funded by: Department of Wildlife and Parks
                Funded by: USAID Emerging Pandemic Threat Program – PREDICT Project
                Funded by: Skoll Foundation
                Funded by: Google Incorporated
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2021

                tspy,sry,indochinese,continental and insular sundaic,hybridization,secondary contact

                Comments

                Comment on this article