18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation

      research-article
      , ,   1 , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain.

          The tumor suppressor p53 exerts antiproliferation effects through its ability to function as a sequence-specific DNA-binding transcription factor. Here, we demonstrate that p53 can be modified by acetylation both in vivo and in vitro. Remarkably, the site of p53 that is acetylated by its coactivator, p300, resides in a C-terminal domain known to be critical for the regulation of p53 DNA binding. Furthermore, the acetylation of p53 can dramatically stimulate its sequence-specific DNA-binding activity, possibly as a result of an acetylation-induced conformational change. These observations clearly indicate a novel pathway for p53 activation and, importantly, provide an example of an acetylation-mediated change in the function of a nonhistone regulatory protein. These results have significant implications regarding the molecular mechanisms of various acetyltransferase-containing transcriptional coactivators whose primary targets have been presumed to be histones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein regulation by monoubiquitin.

            L Hicke (2001)
            Multi-ubiquitin chains at least four subunits long are required for efficient recognition and degradation of ubiquitylated proteins by the proteasome, but other functions of ubiquitin have been discovered that do not involve the proteasome. Some proteins are modified by a single ubiquitin or short ubiquitin chains. Instead of sending proteins to their death through the proteasome, monoubiquitylation regulates processes that range from membrane transport to transcriptional regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8.

              Gene activation and repression regulated by acetylation and deacetylation represent a paradigm for the function of histone modifications. We provide evidence that, in contrast, histone H2B monoubiquitylation and its deubiquitylation are both involved in gene activation. Substitution of the H2B ubiquitylation site at Lys 123 (K123) lowered transcription of certain genes regulated by the acetylation complex SAGA. Gene-associated H2B ubiquitylation was transient, increasing early during activation, and then decreasing coincident with significant RNA accumulation. We show that Ubp8, a component of the SAGA acetylation complex, is required for SAGA-mediated deubiquitylation of histone H2B in vitro. Loss of Ubp8 in vivo increased both gene-associated and overall cellular levels of ubiquitylated H2B. Deletion of Ubp8 lowered transcription of SAGA-regulated genes, and the severity of this defect was exacerbated by codeletion of the Gcn5 acetyltransferase within SAGA. In addition, disruption of either ubiquitylation or Ubp8-mediated deubiquitylation of H2B resulted in altered levels of gene-associated H3 Lys 4 methylation and Lys 36 methylation, which have both been linked to transcription. These results suggest that the histone H2B ubiquitylation state is dynamic during transcription, and that the sequence of histone modifications helps to control transcription.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2005
                2005
                07 January 2005
                : 33
                : 1
                : 13-26
                Affiliations
                Prostate Research Group, Northern Institute for Cancer Research Paul, O'Gorman BuildingUniversity of Newcastle Upon Tyne, Medical School Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
                1MRC Cancer Cell Unit, University of Cambridge Cambridge CB2 2X2, UK
                Author notes
                *To whom correspondence should be addressed. Tel: +44 191 222 4266; Fax: +44 191 222 4301; Email: c.n.robson@ 123456ncl.ac.uk
                Article
                10.1093/nar/gki141
                546130
                15640443
                8f4c6d20-2163-489f-9760-1f063cfa325b
                © 2005, the authors Nucleic Acids Research, Vol. 33 No. 1 © Oxford University Press 2005; all rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use permissions, please contact journals.permissions@ 123456oupjournals.org .

                History
                : 12 November 2004
                : 01 December 2004
                : 01 December 2004
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article