40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Essential Role of Vitellogenin Receptor in Ovary Development and Vitellogenin Uptake in Bactrocera dorsalis (Hendel)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The vitellogenin receptor (VgR) functions as an essential component in uptaking and transporting vitellogenin (Vg) in female adults, which is involved in ovary development and oviposition. This study aimed to clarify the molecular characteristics and function of VgR in the oriental fruit fly Bactrocera dorsalis (Hendel). Here, we identified the full-length of BdVgR (GenBank Accession No. JX469118), encoding a 1925 residue (aa) protein with a 214.72 kDa molecular mass and several typical motifs of low-density lipoprotein receptor superfamily (LDLR). Phylogenic analysis suggested that BdVgR was evolutionary conserved with other Dipteran VgRs. The expression of BdVgR was exclusively detected in the ovaries rather than head, thorax or other tissues. The developmental expression patterns showed that the signal of BdVgR was detectable in very beginning of adult stage, and positively correlated with the growth rate of ovaries and the expression levels of its ligands. In addition, we also demonstrated that the expression level of BdVgR, and ovary development were significantly suppressed after being injected with BdVgR-targeted dsRNA. Together, all of these results indicated that BdVgR was critical for yolk protein absorption and ovary maturation in B. dorsalis, playing a vital role in female reproduction.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SMART: recent updates, new developments and status in 2015

          SMART (Simple Modular Architecture Research Tool) is a web resource (http://smart.embl.de/) providing simple identification and extensive annotation of protein domains and the exploration of protein domain architectures. In the current version, SMART contains manually curated models for more than 1200 protein domains, with ∼200 new models since our last update article. The underlying protein databases were synchronized with UniProt, Ensembl and STRING, bringing the total number of annotated domains and other protein features above 100 million. SMART's ‘Genomic’ mode, which annotates proteins from completely sequenced genomes was greatly expanded and now includes 2031 species, compared to 1133 in the previous release. SMART analysis results pages have been completely redesigned and include links to several new information sources. A new, vector-based display engine has been developed for protein schematics in SMART, which can also be exported as high-resolution bitmap images for easy inclusion into other documents. Taxonomic tree displays in SMART have been significantly improved, and can be easily navigated using the integrated search engine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Social exploitation of vitellogenin.

            Vitellogenin is a female-specific glucolipoprotein yolk precursor produced by all oviparous animals. Vitellogenin expression is under hormonal control, and the protein is generally synthesized directly before yolk deposition. In the honeybee (Apis mellifera), vitellogenin is not only synthesized by the reproductive queen, but also by the functionally sterile workers. In summer, the worker population consists of a hive bee group performing a multitude of tasks including nursing inside the nest, and a forager group specialized in collecting nectar, pollen, water, and propolis. Vitellogenin is synthesized in large quantities by hive bees. When hive bees develop into foragers, their juvenile hormone titers increase, and this causes cessation of their vitellogenin production. This inverse relationship between vitellogenin synthesis and juvenile hormone is opposite to the norm in insects, and the underlying proximate processes and life-history reasons are still not understood. Here we document an alternative use of vitellogenin by showing that it is a source for the proteinaceous royal jelly that is produced by the hive bees. Hive bees use the jelly to feed larvae, queen, workers, and drones. This finding suggests that the evolution of a brood-rearing worker class and a specialized forager class in an advanced eusocial insect society has been directed by an alternative utilization of yolk protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prediction of glycosylation sites using random forests

              Background Post translational modifications (PTMs) occur in the vast majority of proteins and are essential for function. Prediction of the sequence location of PTMs enhances the functional characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding, transport and function. Results We use the random forest algorithm and pairwise patterns to predict glycosylation sites. We identify pairwise patterns surrounding glycosylation sites and use an odds ratio to weight their propensity of association with modified residues. Our prediction program, GPP (glycosylation prediction program), predicts glycosylation sites with an accuracy of 90.8% for Ser sites, 92.0% for Thr sites and 92.8% for Asn sites. This is significantly better than current glycosylation predictors. We use the trepan algorithm to extract a set of comprehensible rules from GPP, which provide biological insight into all three major glycosylation types. Conclusion We have created an accurate predictor of glycosylation sites and used this to extract comprehensible rules about the glycosylation process. GPP is available online at .
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                07 August 2015
                August 2015
                : 16
                : 8
                : 18368-18383
                Affiliations
                [1 ]Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; E-Mails: iamconglin@ 123456126.com (L.C.); yangwenjia10@ 123456126.com (W.-J.Y.); jxzzby@ 123456163.com (X.-Z.J.); jinzhiniu@ 123456yahoo.com (J.-Z.N.); blackaet@ 123456163.com (G.-M.S.)
                [2 ]Citrus Research Institute, Southwest University, Chongqing 400712, China; E-Mail: ranchun@ 123456cric.cn
                [3 ]College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: wangjinjun@ 123456swu.edu.cn ; Tel.: +86-23-6825-0255; Fax: +86-23-6825-1269.
                Article
                ijms-16-18368
                10.3390/ijms160818368
                4581250
                26262609
                8f4d8d5d-b5ac-427f-abdc-07a6131f60a5
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 June 2015
                : 30 July 2015
                Categories
                Article

                Molecular biology
                bactrocera dorsalis,vitellogenin receptor,yolk protein,ovary,rna interference
                Molecular biology
                bactrocera dorsalis, vitellogenin receptor, yolk protein, ovary, rna interference

                Comments

                Comment on this article