3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Berberine reduces neuroglia activation and inflammation in streptozotocin-induced diabetic mice

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We aimed to analyze the action of berberine on the neuropathic pain and neuroglia activation in experimental diabetes mellitus (DM) model. Diabetes in mice was induced by intraperitoneal injection of streptozotocin (STZ) followed by the administration of berberine. Mechanical allodynia and thermal hyperalgesia and activations of microglia and astrocytes were evaluated. The levels of pro-inflammatory cytokines and protein expressions of inflammatory proteins were assessed by enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. Our results revealed the anti-nociceptive effects of berberine in DM mice, supported by the improved mechanical threshold and thermal latency. In addition, berberine suppressed the activations of microglia and astrocytes in the spinal cords of diabetic mice. Berberine inhibited the expression of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), and interleukin-1β (IL-1β), along with inflammatory proteins including iNOS and COX-2. Berberine suppressed neuropathic pain in STZ-induced diabetic mice, and this effect is related to the reduction on the neuroglia activation and inflammation associated with DM.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain

          The microglia, once thought only to be supporting cells of the central nervous system (CNS), are now recognized to play essential roles in many pathologies. Many studies within the last decades indicated that the neuro-immune interaction underlies the generation and maintenance of neuropathic pain. Through a large number of receptors and signaling pathways, the microglial cells communicate with neurons, astrocytes and other cells, including those of the immune system. A disturbance or loss of CNS homeostasis causes rapid responses of the microglia, which undergo a multistage activation process. The activated microglia change their cell shapes and gene expression profiles, which induce proliferation, migration, and the production of pro- or antinociceptive factors. The cells release a large number of mediators that can act in a manner detrimental or beneficial to the surrounding cells and can indirectly alter the nociceptive signals. This review discusses the most important microglial intracellular signaling cascades (MAPKs, NF-κB, JAK/STAT, PI3K/Akt) that are essential for neuropathic pain development and maintenance. Our objective was to identify new molecular targets that may result in the development of powerful tools to control the signaling associated with neuropathic pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in the management of diabetic distal symmetrical polyneuropathy

            Abstract There is now little doubt that poor blood glucose control is an important risk factor for the development of diabetic peripheral neuropathy (DPN). Furthermore, traditional cardiovascular risk factors for macrovascular disease appear to be associated with an increased risk of DPN. The recently established International Expert Group on Diabetic Neuropathy has recommended new criteria for the diagnosis of DPN in the context of clinical and research settings. Studies in experimental diabetes examining the pathogenesis of DPN have identified a number of metabolic abnormalities including polyol pathway hyperactivity, increased advanced glycation end‐point formation, alterations in the protein kinase C beta pathway through diacylglycerol and oxidative stress. There is now strong evidence implicating nerve ischemia as the cause of DPN. Studies in human and animal models have shown reduced nerve perfusion and endoneurial hypoxia. These endoneurial microvascular changes strongly correlate with clinical severity and the degree of nerve‐fiber pathology. Unfortunately, many compounds that have been effective in animal models of neuropathy have not been successful in human diabetic neuropathy. The only compounds found to be efficacious in human diabetic neuropathy, and are in clinical use, are the anti‐oxidant, α‐lipoic acid and the aldose reductase inhibitor, epalrestat. Overall, the evidence emphasizes the importance of vascular dysfunction, driven by metabolic change, in the etiology of DPN, and highlights potential therapeutic approaches. Epidemiological data on diabetic painful neuropathic pain (DPNP) are limited. In one population‐based study, the prevalence of DPNP, as assessed by a structured questionnaire and examination, was estimated at 16%. It was notable that, of these patients, 12.5% had never reported symptoms to their doctor and 39% had never received treatment for their pain. Thus, despite being common, DPNP continues to be underdiagnosed and undertreated. Pharmacological treatment of DPNP include tricyclic compounds, serotonin noradrenalin reuptake inhibitors, the anti‐oxidant α‐lipoic acid, anticonvulsants, opiates, membrane stabilizers, topical capsaicin and so on. Management of the patient with DPNP must be tailored to individual requirements and will depend on the presence of other comorbidities. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00083.x)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice.

              Postoperative cognitive dysfunction (POCD) is a significant cause of morbidity after surgery, especially for the elderly. Accumulating evidence has demonstrated that neuroinflammation plays a key role in the pathogenesis of POCD. Thus, we hypothesized that berberine, an isoquinoline alkaloid with anti-inflammatory effects, could improve surgery-induced cognitive impairment. Twenty-month-old male C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. For the interventional studies, mice received berberine (10mg/kg) or vehicle intraperitoneally. For the in vitro study, we examined the effects of berberine on lipopolysaccharide (LPS)-induced inflammatory mediators by cultured BV2 cells. Behavioral tests, expressions of IBA1, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were performed at the indicated time points. In the present study, we showed that surgery impaired the contextual fear memory, as evidenced by the significantly decreased freezing time to the context. This behavioral change coincided with marked increases in IBA1, TNF-α, IL-1β, and IL-6 in the prefrontal cortex and hippocampus only at 24h but not 7 d after surgery. In BV2 cells, LPS induced significantly increased TNF-α and IL-1β expressions. Notably, berberine treatment rescued surgery-induced cognitive impairment and inhibited the release of IBA1, IL-1β, and IL-6 in the hippocampus. In line with the in vivo study, berberine treatment suppressed LPS-stimulated production of TNF-α and IL-1β in BV2 cells. In conclusion, our study suggests that berberine could alleviate POCD by suppressing neuroinflammation in aged mice.
                Bookmark

                Author and article information

                Journal
                Int J Immunopathol Pharmacol
                Int J Immunopathol Pharmacol
                IJI
                spiji
                International Journal of Immunopathology and Pharmacology
                SAGE Publications (Sage UK: London, England )
                0394-6320
                2058-7384
                24 July 2019
                Jan-Dec 2019
                : 33
                : 2058738419866379
                Affiliations
                [1-2058738419866379]Department of Internal Medicine, Jinan Second People’s Hospital, Jinan, China
                Author notes
                [*]Na Zhang, Department of Internal Medicine, Jinan Second People’s Hospital, No. 148 Jingyi Road, Jinan 250001, Shandong, China. Email: zhangnaneike@ 123456126.com
                Author information
                https://orcid.org/0000-0002-5285-3756
                Article
                10.1177_2058738419866379
                10.1177/2058738419866379
                6657114
                31337260
                8f4f07fe-7045-4cc1-bb22-91c70f1eec9d
                © The Author(s) 2019

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 23 January 2019
                : 5 July 2019
                Categories
                Letter to the Editor
                Custom metadata
                January-December 2019

                astrocytes,berberine,diabetes mellitus,microglia,neuropathic pain

                Comments

                Comment on this article