18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C-terminus

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The molecular circadian clock in mammals is generated from transcriptional activation by the bHLH-PAS transcription factor CLOCK–BMAL1 and subsequent repression by PERIOD and CRYPTOCHROME (CRY). The mechanism by which CRYs repress CLOCK–BMAL1 to close the negative feedback loop and generate 24-hour timing is not known. Here we show that CRY1 competes for binding with coactivators to the intrinsically unstructured C-terminal transactivation domain (TAD) of BMAL1 to establish a functional switch between activation and repression of CLOCK–BMAL1. Mutations within the TAD that alter affinities for coregulators change the balance of repression and activation to consequently change intrinsic circadian period or eliminate cycling altogether. Our results suggest that CRY1 fulfills its role as an essential circadian repressor by sequestering the TAD from coactivators and highlight regulation of the BMAL1 TAD as a critical mechanism for establishing circadian timing.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.

          The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular architecture of the mammalian circadian clock.

            Circadian clocks coordinate physiology and behavior with the 24h solar day to provide temporal homeostasis with the external environment. The molecular clocks that drive these intrinsic rhythmic changes are based on interlocked transcription/translation feedback loops that integrate with diverse environmental and metabolic stimuli to generate internal 24h timing. In this review we highlight recent advances in our understanding of the core molecular clock and how it utilizes diverse transcriptional and post-transcriptional mechanisms to impart temporal control onto mammalian physiology. Understanding the way in which biological rhythms are generated throughout the body may provide avenues for temporally directed therapeutics to improve health and prevent disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the CLOCK protein in the mammalian circadian mechanism.

              The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms and is related to transcription factors that act as heterodimers. Potential partners of CLOCK were isolated in a two-hybrid screen, and one, BMAL1, was coexpressed with CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1 heterodimers activated transcription from E-box elements, a type of transcription factor-binding site, found adjacent to the mouse per1 gene and from an identical E-box known to be important for per gene expression in Drosophila. Mutant CLOCK from the dominant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed to activate transcription. Thus, CLOCK-BMAL1 heterodimers appear to drive the positive component of per transcriptional oscillations, which are thought to underlie circadian rhythmicity.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nat. Struct. Mol. Biol.
                Nature structural & molecular biology
                1545-9993
                1545-9985
                28 April 2015
                11 May 2015
                June 2015
                01 December 2015
                : 22
                : 6
                : 476-484
                Affiliations
                [1 ] Department of Biological Sciences, University of Memphis, Memphis, Tennessee USA
                [2 ] Feinstone Center for Genomic Research, University of Memphis, Memphis, Tennessee USA
                [3 ] Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California USA
                [4 ] Center for Circadian Biology, University of California San Diego, San Diego, California USA
                Author notes
                Correspondence should be addressed to C.L.P. ( cpartch@ 123456ucsc.edu ) or A.C.L. ( acliu@ 123456memphis.edu )
                Article
                NIHMS678405
                10.1038/nsmb.3018
                4456216
                25961797
                8f5214c1-7683-43c5-aaa0-25c69bb3c7df
                History
                Categories
                Article

                Molecular biology
                negative feedback,transactivation domain,cbp(p300),intrinsically disordered,nmr spectroscopy

                Comments

                Comment on this article