+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Intra-Familial Clinical Heterogeneity: Absence of Genotype-Phenotype Correlation in Primary Hyperoxaluria Type 1 in Israel

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background/Aims: Primary hyperoxaluria type 1 (PH1) is caused by the deficiency of the liver enzyme alanine:glyoxylate aminotransferase which results in increased synthesis and excretion of oxalate. The clinical manifestations of PH1 are heterogeneous with respect to the age of onset and rate of progression. The aim of this study was to investigate possible relationships between a given genotype, the biochemical profile and the clinical phenotype. Methods: We conducted a study of 56 patients from 22 families with PH1 from Israel. The clinical and biochemical data were compiled and the genotype was determined for each family. Results: The prevalent phenotype was of early onset with progression to end-stage renal disease during the first decade of life. Fifteen PH1-causing mutations were detected in 21 families: 10 were first described in this patient population. Marked intra-familial clinical heterogeneity was noted, meaning that there was no correlation between a given genotype and the phenotype. Conclusions: The clinical course of patients with PH1 is not dictated primarily by its genotype. Other genetic and/or environmental factors play a role in determining the ultimate phenotype.

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: not found

          Maneuvering in the complex path from genotype to phenotype.

           R Strohman (2002)
          Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical implications of mutation analysis in primary hyperoxaluria type 1.

            Primary hyperoxaluria type 1 (PH1) is an inborn error of glyoxylate metabolism with an extensive clinical and genetic heterogeneity. Although over 50 disease-causing mutations have been identified, the relationship between genotype and clinical outcome remains unclear. The aim of this study was to determine this association in order to find clues for improvement of patient care. AGXT mutation analysis and assessment of biochemical characteristics and clinical outcome were performed on patients from a Dutch PH1 cohort. Thirty-three of a cohort of 57 PH1 patients, identified in The Netherlands over a period of 30 years, were analyzed. Ten different mutations were found. The most common mutations were the Gly170Arg, Phe152Ile, and the 33insC mutations, with an allele frequency of 43%, 19%, and 15%, respectively. Homozygous Gly170Arg and Phe152Ile mutations were associated with pyridoxine responsiveness and a preserved renal function over time when treatment was timely initiated. All patients homozygous for the 33insC mutation had end-stage renal disease (ESRD) before the first year of age. In two unrelated patients, a new Val336Asp mutation was found coupled with the Gly170Arg mutation on the minor allele. We also found 3 patients homozygous for a novel Gly82Arg mutation with adverse outcome in 2 of them. Early detection of Gly170Arg and Phe152Ile mutations in PH1 has important clinical implications because of their association with pyridoxine responsiveness and clinical outcome. The association of a homozygous 33insC mutation with severe infantile ESRD, resulting in early deaths in 2 out of 3 cases, warrants a choice for prenatal diagnostics in affected families.
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of mutation screening as a first line test for the diagnosis of the primary hyperoxalurias.

              A definitive diagnosis of primary hyperoxaluria type 1 (PH1) and primary hyperoxaluria type 2 (PH2) requires the measurement of alanine:glyoxylate aminotransferase (AGT) and glyoxylate reductase (GR) activities, respectively, in a liver biopsy. We have evaluated a molecular genetic approach for the diagnosis of these autosomal-recessive diseases. Polymerase chain reaction (PCR) was used to detect three common mutations in the AGXT gene (c.33_34insC, c.508G>A, and c.731T>C) and one, c.103delG, in the GRHPR gene in DNA samples from 365 unrelated individuals referred for diagnosis of PH1 and/or PH2 by liver enzyme analysis. One or more of these mutations was found in 183 (68.8%) biopsy proven cases of PH1 and PH2 with a test negative predictive value of 62% and 2%, respectively. 102 (34.1%) patients were homozygous or compound heterozygous, making a molecular diagnosis possible. Age of onset and presenting features were similar in patients homozygous for any of the four mutations. Of the AGXT homozygotes, only the c.508G>A mutant was associated with significant AGT catalytic activity and in two of these activity was in the low normal range, possibly reflecting variation in mitochondrial content of the biopsy as this particular mutation is associated with mitochondrial mistargeting. Limited mutation analysis can provide a useful first line test for PH1 and PH2 in patients in whom primary hyperoxaluria is suspected and in whom secondary causes have been excluded. Those patients in whom a single mutation, or no mutation, is found can then be selectively targeted for liver biopsy.

                Author and article information

                Am J Nephrol
                American Journal of Nephrology
                S. Karger AG
                June 2005
                01 July 2005
                : 25
                : 3
                : 269-275
                aDivision of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem; bMetabolic Disease Unit, Department of Pediatrics, Rambam Medical Center, Haifa, and cPediatric Nephrology Unit, West Galilee Medical Center, Naharia, Israel; dLaboratory of Genetic Metabolic Diseases, Emma Children’s Hospital, University of Amsterdam, Amsterdam, The Netherlands; eClinical Biochemistry, UCL Hospitals, London, UK, and fDepartment of Pathology, Ghent University, Ghent, Belgium
                86357 Am J Nephrol 2005;25:269–275
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, Tables: 1, References: 20, Pages: 7
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/86357
                7th International Workshop on Primary Hyperoxaluria. October, 2004, Rochester, Minn. ...


                Comment on this article