76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The co-pathogenesis of influenza viruses with bacteria in the lung

      Nature Reviews Microbiology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Concern that a highly pathogenic virus might cause the next influenza pandemic has spurred recent research into influenza and its complications. Bacterial superinfection in the lungs of people suffering from influenza is a key element that promotes severe disease and mortality. This co-pathogenesis is characterized by complex interactions between co-infecting pathogens and the host, leading to the disruption of physical barriers, dysregulation of immune responses and delays in a return to homeostasis. The net effect of this cascade can be the outgrowth of the pathogens, immune-mediated pathology and increased morbidity. In this Review, advances in our understanding of the underlying mechanisms are discussed, and the key questions that will drive the field forwards are articulated.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Microbiota regulates immune defense against respiratory tract influenza A virus infection.

          Although commensal bacteria are crucial in maintaining immune homeostasis of the intestine, the role of commensal bacteria in immune responses at other mucosal surfaces remains less clear. Here, we show that commensal microbiota composition critically regulates the generation of virus-specific CD4 and CD8 T cells and antibody responses following respiratory influenza virus infection. By using various antibiotic treatments, we found that neomycin-sensitive bacteria are associated with the induction of productive immune responses in the lung. Local or distal injection of Toll-like receptor (TLR) ligands could rescue the immune impairment in the antibiotic-treated mice. Intact microbiota provided signals leading to the expression of mRNA for pro-IL-1β and pro-IL-18 at steady state. Following influenza virus infection, inflammasome activation led to migration of dendritic cells (DCs) from the lung to the draining lymph node and T-cell priming. Our results reveal the importance of commensal microbiota in regulating immunity in the respiratory mucosa through the proper activation of inflammasomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critically Ill patients with 2009 influenza A(H1N1) in Mexico.

            In March 2009, novel 2009 influenza A(H1N1) was first reported in the southwestern United States and Mexico. The population and health care system in Mexico City experienced the first and greatest early burden of critical illness. To describe baseline characteristics, treatment, and outcomes of consecutive critically ill patients in Mexico hospitals that treated the majority of such patients with confirmed, probable, or suspected 2009 influenza A(H1N1). Observational study of 58 critically ill patients with 2009 influenza A(H1N1) at 6 hospitals between March 24 and June 1, 2009. Demographic data, symptoms, comorbid conditions, illness progression, treatments, and clinical outcomes were collected using a piloted case report form. The primary outcome measure was mortality. Secondary outcomes included rate of 2009 influenza (A)H1N1-related critical illness and mechanical ventilation as well as intensive care unit (ICU) and hospital length of stay. Critical illness occurred in 58 of 899 patients (6.5%) admitted to the hospital with confirmed, probable, or suspected 2009 influenza (A)H1N1. Patients were young (median, 44.0 [range, 10-83] years); all presented with fever and all but 1 with respiratory symptoms. Few patients had comorbid respiratory disorders, but 21 (36%) were obese. Time from hospital to ICU admission was short (median, 1 day [interquartile range {IQR}, 0-3 days]), and all patients but 2 received mechanical ventilation for severe acute respiratory distress syndrome and refractory hypoxemia (median day 1 ratio of Pao(2) to fraction of inspired oxygen, 83 [IQR, 59-145] mm Hg). By 60 days, 24 patients had died (41.4%; 95% confidence interval, 28.9%-55.0%). Patients who died had greater initial severity of illness, worse hypoxemia, higher creatine kinase levels, higher creatinine levels, and ongoing organ dysfunction. After adjusting for a reduced opportunity of patients dying early to receive neuraminidase inhibitors, neuraminidase inhibitor treatment (vs no treatment) was associated with improved survival (odds ratio, 8.5; 95% confidence interval, 1.2-62.8). Critical illness from 2009 influenza A(H1N1) in Mexico occurred in young individuals, was associated with severe acute respiratory distress syndrome and shock, and had a high case-fatality rate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness.

              Despite the availability of published data on 4 pandemics that have occurred over the past 120 years, there is little modern information on the causes of death associated with influenza pandemics. We examined relevant information from the most recent influenza pandemic that occurred during the era prior to the use of antibiotics, the 1918-1919 "Spanish flu" pandemic. We examined lung tissue sections obtained during 58 autopsies and reviewed pathologic and bacteriologic data from 109 published autopsy series that described 8398 individual autopsy investigations. The postmortem samples we examined from people who died of influenza during 1918-1919 uniformly exhibited severe changes indicative of bacterial pneumonia. Bacteriologic and histopathologic results from published autopsy series clearly and consistently implicated secondary bacterial pneumonia caused by common upper respiratory-tract bacteria in most influenza fatalities. The majority of deaths in the 1918-1919 influenza pandemic likely resulted directly from secondary bacterial pneumonia caused by common upper respiratory-tract bacteria. Less substantial data from the subsequent 1957 and 1968 pandemics are consistent with these findings. If severe pandemic influenza is largely a problem of viral-bacterial copathogenesis, pandemic planning needs to go beyond addressing the viral cause alone (e.g., influenza vaccines and antiviral drugs). Prevention, diagnosis, prophylaxis, and treatment of secondary bacterial pneumonia, as well as stockpiling of antibiotics and bacterial vaccines, should also be high priorities for pandemic planning.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Microbiology
                Nat Rev Microbiol
                Springer Science and Business Media LLC
                1740-1526
                1740-1534
                April 2014
                March 3 2014
                April 2014
                : 12
                : 4
                : 252-262
                Article
                10.1038/nrmicro3231
                24590244
                8f636415-6f50-482f-9e62-c7b9ba453c64
                © 2014

                Free to read

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article