34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters

      research-article
      1 , 3 , 1 , 2 , 1 ,
      Critical Care
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Although less invasive than pulmonary artery catheters (PACs), arterial pulse pressure analysis techniques for estimating cardiac output (CO) have not been simultaneously compared to PAC bolus thermodilution CO (COtd) or continuous CO (CCO) devices.

          Methods

          We compared the accuracy, bias and trending ability of LiDCO™, PiCCO™ and FloTrac™ with PACs (COtd, CCO) to simultaneously track CO in a prospective observational study in 17 postoperative cardiac surgery patients for the first 4 hours following intensive care unit admission. Fifty-five paired simultaneous quadruple CO measurements were made before and after therapeutic interventions (volume, vasopressor/dilator, and inotrope).

          Results

          Mean CO values for PAC, LiDCO, PiCCO and FloTrac were similar (5.6 ± 1.5, 5.4 ± 1.6, 5.4 ± 1.5 and 6.1 ± 1.9 L/min, respectively). The mean CO bias by each paired method was -0.18 (PAC-LiDCO), 0.24 (PAC-PiCCO), -0.43 (PAC-FloTrac), 0.06 (LiDCO-PiCCO), -0.63 (LiDCO-FloTrac) and -0.67 L/min (PiCCO-FloTrac), with limits of agreement (1.96 standard deviation, 95% confidence interval) of ± 1.56, ± 2.22, ± 3.37, ± 2.03, ± 2.97 and ± 3.44 L/min, respectively. The instantaneous directional changes between any paired CO measurements displayed 74% (PAC-LiDCO), 72% (PAC-PiCCO), 59% (PAC-FloTrac), 70% (LiDCO-PiCCO), 71% (LiDCO-FloTrac) and 63% (PiCCO-FloTrac) concordance, but poor correlation ( r 2 = 0.36, 0.11, 0.08, 0.20, 0.23 and 0.11, respectively). For mean CO < 5 L/min measured by each paired devices, the bias decreased slightly.

          Conclusions

          Although PAC (CO TD/CCO), FloTrac, LiDCO and PiCCO display similar mean CO values, they often trend differently in response to therapy and show different interdevice agreement. In the clinically relevant low CO range (< 5 L/min), agreement improved slightly. Thus, utility and validation studies using only one CO device may potentially not be extrapolated to equivalency of using another similar device.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Passive leg raising predicts fluid responsiveness in the critically ill.

            Passive leg raising (PLR) represents a "self-volume challenge" that could predict fluid response and might be useful when the respiratory variation of stroke volume cannot be used for that purpose. We hypothesized that the hemodynamic response to PLR predicts fluid responsiveness in mechanically ventilated patients. Prospective study. Medical intensive care unit of a university hospital. We investigated 71 mechanically ventilated patients considered for volume expansion. Thirty-one patients had spontaneous breathing activity and/or arrhythmias. We assessed hemodynamic status at baseline, after PLR, and after volume expansion (500 mL NaCl 0.9% infusion over 10 mins). We recorded aortic blood flow using esophageal Doppler and arterial pulse pressure. We calculated the respiratory variation of pulse pressure in patients without arrhythmias. In 37 patients (responders), aortic blood flow increased by > or =15% after fluid infusion. A PLR increase of aortic blood flow > or =10% predicted fluid responsiveness with a sensitivity of 97% and a specificity of 94%. A PLR increase of pulse pressure > or =12% predicted volume responsiveness with significantly lower sensitivity (60%) and specificity (85%). In 30 patients without arrhythmias or spontaneous breathing, a respiratory variation in pulse pressure > or =12% was of similar predictive value as was PLR increases in aortic blood flow (sensitivity of 88% and specificity of 93%). In patients with spontaneous breathing activity, the specificity of respiratory variations in pulse pressure was poor (46%). The changes in aortic blood flow induced by PLR predict preload responsiveness in ventilated patients, whereas with arrhythmias and spontaneous breathing activity, respiratory variations of arterial pulse pressure poorly predict preload responsiveness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators.

              To examine the association between the use of right heart catheterization (RHC) during the first 24 hours of care in the intensive care unit (ICU) and subsequent survival, length of stay, intensity of care, and cost of care. Prospective cohort study. Five US teaching hospitals between 1989 and 1994. A total of 5735 critically ill adult patients receiving care in an ICU for 1 of 9 prespecified disease categories. Survival time, cost of care, intensity of care, and length of stay in the ICU and hospital, determined from the clinical record and from the National Death Index. A propensity score for RHC was constructed using multivariable logistic regression. Case-matching and multivariable regression modeling techniques were used to estimate the association of RHC with specific outcomes after adjusting for treatment selection using the propensity score. Sensitivity analysis was used to estimate the potential effect of an unidentified or missing covariate on the results. By case-matching analysis, patients with RHC had an increased 30-day mortality (odds ratio, 1.24; 95% confidence interval, 1.03-1.49). The mean cost (25th, 50th, 75th percentiles) per hospital stay was $49 300 ($17 000, $30 500, $56 600) with RHC and $35 700 ($11 300, $20 600, $39 200) without RHC. Mean length of stay in the ICU was 14.8 (5, 9, 17) days with RHC and 13.0 (4, 7, 14) days without RHC. These findings were all confirmed by multivariable modeling techniques. Subgroup analysis did not reveal any patient group or site for which RHC was associated with improved outcomes. Patients with higher baseline probability of surviving 2 months had the highest relative risk of death following RHC. Sensitivity analysis suggested that a missing covariate would have to increase the risk of death 6-fold and the risk of RHC 6-fold for a true beneficial effect of RHC to be misrepresented as harmful. In this observational study of critically ill patients, after adjustment for treatment selection bias, RHC was associated with increased mortality and increased utilization of resources. The cause of this apparent lack of benefit is unclear. The results of this analysis should be confirmed in other observational studies. These findings justify reconsideration of a randomized controlled trial of RHC and may guide patient selection for such a study.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2010
                23 November 2010
                : 14
                : 6
                : R212
                Affiliations
                [1 ]Department of Critical Care Medicine, University of Pittsburgh Medical Center, 230 Lothrop Street, Pittsburgh, PA 15261, USA
                [2 ]Cardiothoracic Surgery, University of Pittsburgh Medical Center, 230 Lothrop Street, Pittsburgh, PA 15261, USA
                [3 ]Current address: Eisenhower Medical Center, 39000 Bob Hope Drive, Rancho Mirage, CA 92270, USA
                Article
                cc9335
                10.1186/cc9335
                3220011
                21092290
                8f63c797-ed23-4448-ae5b-01a497606b7d
                Copyright ©2010 Hadian et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 May 2010
                : 8 September 2010
                : 23 November 2010
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article