12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in \(\alpha \text{−}{\mathrm{RuCl}}_{3}\)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d854760e142">We report on terahertz spectroscopy of quantum spin dynamics in α-RuCl_{3}, a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at T_{s2}=62  K. With the onset of a long-range magnetic order at T_{N}=6.5  K, spectral weight is transferred to a well-defined magnetic excitation at ℏω_{1}=2.48  meV, which is accompanied by a higher-energy band at ℏω_{2}=6.48  meV. Both excitations soften in a magnetic field, signaling a quantum phase transition close to B_{c}=7  T, where a broad continuum dominates the dynamical response. Above B_{c}, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid. </p>

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Anyons in an exactly solved model and beyond

          A spin 1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static \(\mathbb{Z}_{2}\) gauge field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding rules coincide with those of conformal blocks for the Ising model. We also consider a general theory of free fermions with a gapped spectrum, which is characterized by a spectral Chern number \(\nu\). The Abelian and non-Abelian phases of the original model correspond to \(\nu=0\) and \(\nu=\pm 1\), respectively. The anyonic properties of excitation depend on \(\nu\bmod 16\), whereas \(\nu\) itself governs edge thermal transport. The paper also provides mathematical background on anyons as well as an elementary theory of Chern number for quasidiagonal matrices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutron scattering in the proximate quantum spin liquid α-RuCl3

            The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models

              We study the magnetic interactions in Mott-Hubbard systems with partially filled \(t_{2g}\)-levels and with strong spin-orbit coupling. The latter entangles the spin and orbital spaces, and leads to a rich variety of the low energy Hamiltonians that extrapolate from the Heisenberg to a quantum compass model depending on the lattice geometry. This gives way to "engineer" in such Mott insulators an exactly solvable spin model by Kitaev relevant for quantum computation. We, finally, explain "weak" ferromagnetism, with an anomalously large ferromagnetic moment, in Sr\(_2\)IrO\(_4\).
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                November 2017
                November 28 2017
                : 119
                : 22
                Article
                10.1103/PhysRevLett.119.227202
                29286817
                8f71e727-6bc5-4b08-b05e-047cec9e1adb
                © 2017

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article