3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Self-rated impulsivity in healthy individuals, substance use disorder and ADHD: psychometric properties of the Swedish Barratt impulsiveness scale

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Impulsivity is associated with several psychiatric disorders, including substance use disorders (SUD) and attention deficit hyperactivity disorder (ADHD). A widely used questionnaire to assess impulsivity is the Barratt Impulsiveness Scale (BIS), and the aim of the current study was to evaluate the psychometric properties of the Swedish version of the BIS (swe-BIS).

          Methods

          The original BIS was translated to Swedish and back-translated by an authorized translator. The swe-BIS was administered to healthy controls ( n = 113), patients with alcohol use disorder ( n = 97), amphetamine use disorder ( n = 37) and attention deficit hyperactive disorder (ADHD; n = 26). A subset of subjects ( n = 62) completed the swe-BIS twice within 1 week. Psychometric evaluation of the swe-BIS included assessment of different indices of reliability (internal consistency, test-retest and agreement) and validity (response processess, divergent and convergent). Confirmatory factor analyses (CFA) were performed to assess several indices of model fit in five different models based on previously suggested subscales.

          Results

          Cronbach’s alpha for all swe-BIS items in the full sample was 0.89, ranging from 0.78–0.87 within the different subgroups. The Pearson test-retest correlation for total score was 0.78 ( p < 0.001), with greater test-retest correlations within compared to across different subscales. The Bland-Altman plot indicated high level of agreement between test and retest. The healthy individuals had lower swe-BIS score compared to the patients (t(267.3) = − 8.6; p < 0.001), and the swe-BIS total score was also significantly different between each of the four participant groups ( p < 0.01 for all group comparisons). Furthermore, swe-BIS had greater correlations with impulsivity related scales compared to non-impulsivity related scales. The CFA analyses indicated that while no suggested model showed an optimal fit, the best model fit indices was found for the 3-factor model.

          Conclusions

          The swe-BIS was found to have good to excellent psychometric properties with respect to the assessed indices of reliability and validity, supporting use of the scale in clinical research in both healthy individuals and patients with SUD and ADHD.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12888-021-03462-1.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          lavaan: AnRPackage for Structural Equation Modeling

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Making sense of Cronbach's alpha

              Medical educators attempt to create reliable and valid tests and questionnaires in order to enhance the accuracy of their assessment and evaluations. Validity and reliability are two fundamental elements in the evaluation of a measurement instrument. Instruments can be conventional knowledge, skill or attitude tests, clinical simulations or survey questionnaires. Instruments can measure concepts, psychomotor skills or affective values. Validity is concerned with the extent to which an instrument measures what it is intended to measure. Reliability is concerned with the ability of an instrument to measure consistently. 1 It should be noted that the reliability of an instrument is closely associated with its validity. An instrument cannot be valid unless it is reliable. However, the reliability of an instrument does not depend on its validity. 2 It is possible to objectively measure the reliability of an instrument and in this paper we explain the meaning of Cronbach’s alpha, the most widely used objective measure of reliability. Calculating alpha has become common practice in medical education research when multiple-item measures of a concept or construct are employed. This is because it is easier to use in comparison to other estimates (e.g. test-retest reliability estimates) 3 as it only requires one test administration. However, in spite of the widespread use of alpha in the literature the meaning, proper use and interpretation of alpha is not clearly understood. 2 , 4 , 5 We feel it is important, therefore, to further explain the underlying assumptions behind alpha in order to promote its more effective use. It should be emphasised that the purpose of this brief overview is just to focus on Cronbach’s alpha as an index of reliability. Alternative methods of measuring reliability based on other psychometric methods, such as generalisability theory or item-response theory, can be used for monitoring and improving the quality of OSCE examinations 6 - 10 , but will not be discussed here. What is Cronbach alpha? Alpha was developed by Lee Cronbach in 1951 11 to provide a measure of the internal consistency of a test or scale; it is expressed as a number between 0 and 1. Internal consistency describes the extent to which all the items in a test measure the same concept or construct and hence it is connected to the inter-relatedness of the items within the test. Internal consistency should be determined before a test can be employed for research or examination purposes to ensure validity. In addition, reliability estimates show the amount of measurement error in a test. Put simply, this interpretation of reliability is the correlation of test with itself. Squaring this correlation and subtracting from 1.00 produces the index of measurement error. For example, if a test has a reliability of 0.80, there is 0.36 error variance (random error) in the scores (0.80×0.80 = 0.64; 1.00 – 0.64 = 0.36). 12 As the estimate of reliability increases, the fraction of a test score that is attributable to error will decrease. 2 It is of note that the reliability of a test reveals the effect of measurement error on the observed score of a student cohort rather than on an individual student. To calculate the effect of measurement error on the observed score of an individual student, the standard error of measurement must be calculated (SEM). 13 If the items in a test are correlated to each other, the value of alpha is increased. However, a high coefficient alpha does not always mean a high degree of internal consistency. This is because alpha is also affected by the length of the test. If the test length is too short, the value of alpha is reduced. 2 , 14 Thus, to increase alpha, more related items testing the same concept should be added to the test. It is also important to note that alpha is a property of the scores on a test from a specific sample of testees. Therefore investigators should not rely on published alpha estimates and should measure alpha each time the test is administered. 14 Use of Cronbach’s alpha Improper use of alpha can lead to situations in which either a test or scale is wrongly discarded or the test is criticised for not generating trustworthy results. To avoid this situation an understanding of the associated concepts of internal consistency, homogeneity or unidimensionality can help to improve the use of alpha. Internal consistency is concerned with the interrelatedness of a sample of test items, whereas homogeneity refers to unidimensionality. A measure is said to be unidimensional if its items measure a single latent trait or construct. Internal consistency is a necessary but not sufficient condition for measuring homogeneity or unidimensionality in a sample of test items. 5 , 15 Fundamentally, the concept of reliability assumes that unidimensionality exists in a sample of test items 16 and if this assumption is violated it does cause a major underestimate of reliability. It has been well documented that a multidimensional test does not necessary have a lower alpha than a unidimensional test. Thus a more rigorous view of alpha is that it cannot simply be interpreted as an index for the internal consistency of a test. 5 , 15 , 17 Factor Analysis can be used to identify the dimensions of a test. 18 Other reliable techniques have been used and we encourage the reader to consult the paper “Applied Dimensionality and Test Structure Assessment with the START-M Mathematics Test” and to compare methods for assessing the dimensionality and underlying structure of a test. 19 Alpha, therefore, does not simply measure the unidimensionality of a set of items, but can be used to confirm whether or not a sample of items is actually unidimensional. 5 On the other hand if a test has more than one concept or construct, it may not make sense to report alpha for the test as a whole as the larger number of questions will inevitable inflate the value of alpha. In principle therefore, alpha should be calculated for each of the concepts rather than for the entire test or scale. 2 , 3 The implication for a summative examination containing heterogeneous, case-based questions is that alpha should be calculated for each case. More importantly, alpha is grounded in the ‘tau equivalent model’ which assumes that each test item measures the same latent trait on the same scale. Therefore, if multiple factors/traits underlie the items on a scale, as revealed by Factor Analysis, this assumption is violated and alpha underestimates the reliability of the test. 17 If the number of test items is too small it will also violate the assumption of tau-equivalence and will underestimate reliability. 20 When test items meet the assumptions of the tau-equivalent model, alpha approaches a better estimate of reliability. In practice, Cronbach’s alpha is a lower-bound estimate of reliability because heterogeneous test items would violate the assumptions of the tau-equivalent model. 5 If the calculation of “standardised item alpha” in SPSS is higher than “Cronbach’s alpha”, a further examination of the tau-equivalent measurement in the data may be essential. Numerical values of alpha As pointed out earlier, the number of test items, item inter-relatedness and dimensionality affect the value of alpha. 5 There are different reports about the acceptable values of alpha, ranging from 0.70 to 0.95. 2 , 21 , 22 A low value of alpha could be due to a low number of questions, poor inter-relatedness between items or heterogeneous constructs. For example if a low alpha is due to poor correlation between items then some should be revised or discarded. The easiest method to find them is to compute the correlation of each test item with the total score test; items with low correlations (approaching zero) are deleted. If alpha is too high it may suggest that some items are redundant as they are testing the same question but in a different guise. A maximum alpha value of 0.90 has been recommended. 14 Summary High quality tests are important to evaluate the reliability of data supplied in an examination or a research study. Alpha is a commonly employed index of test reliability. Alpha is affected by the test length and dimensionality. Alpha as an index of reliability should follow the assumptions of the essentially tau-equivalent approach. A low alpha appears if these assumptions are not meet. Alpha does not simply measure test homogeneity or unidimensionality as test reliability is a function of test length. A longer test increases the reliability of a test regardless of whether the test is homogenous or not. A high value of alpha (> 0.90) may suggest redundancies and show that the test length should be shortened. Conclusions Alpha is an important concept in the evaluation of assessments and questionnaires. It is mandatory that assessors and researchers should estimate this quantity to add validity and accuracy to the interpretation of their data. Nevertheless alpha has frequently been reported in an uncritical way and without adequate understanding and interpretation. In this editorial we have attempted to explain the assumptions underlying the calculation of alpha, the factors influencing its magnitude and the ways in which its value can be interpreted. We hope that investigators in future will be more critical when reporting values of alpha in their studies.
                Bookmark

                Author and article information

                Contributors
                lotfi.khemiri@ki.se
                Journal
                BMC Psychiatry
                BMC Psychiatry
                BMC Psychiatry
                BioMed Central (London )
                1471-244X
                18 September 2021
                18 September 2021
                2021
                : 21
                Affiliations
                GRID grid.467087.a, ISNI 0000 0004 0442 1056, Department of Clinical Neuroscience, Centre for Psychiatry Research, , Karolinska Institutet & Stockholm Health Care Services, ; Norra Stationsgatan 69, floor 7, 113 64 Stockholm, Sweden
                Article
                3462
                10.1186/s12888-021-03462-1
                8449879
                33388029
                8f76617e-f0c7-40d0-9030-c6fdd0b93256
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                Funding
                Funded by: Karolinska Institute
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Clinical Psychology & Psychiatry
                bis,barratt impulsiveness scale,impulsivity,motor impulsivity,non-planning impulsivity,attentional impulsivity,psychometrics,substance use disorder,alcohol,amphetamine,adhd

                Comments

                Comment on this article